### **BAB II**

### TINJAUAN PUSTAKA

### A. Telaah Pustaka

### 1. Diabetes Melitus

Diabetes Melitus (DM) adalah kondisi serius jangka panjang dengan gejala penyakit yang menunjukkan gangguan metabolisme dengan kadar glukosa darah melebihi normal. Hal ini terjadi saat kadar glukosa darah sewaktu berada di angka 200 mg/dL atau lebih dan kadar glukosa darah puasa mencapai 126 mg/dL atau lebih, sehingga tubuh tidak bisa menghasilkan atau mengeluarkan hormon insulin dalam jumlah yang cukup. Penyakit jantung dan pembuluh darah, kebutaan dan gagal ginjal adalah contoh penyakit lain yang disebabkan oleh diabetes. Selain itu, diabetes dikenal sebagai silent killer karen dapat membunuh manusia secara diam-diam yang tidak disadari dan sudah terjadi komplikasi saat diketahui (Fauziyyah dan Utama, 2024). Menurut Tandra, (2020) diabetes melitus diklasifikasikan dalam beberapa kategori umum yaitu sebagai berikut:

### a. Diabetes Melitus Tipe 1

Diabetes melitus tipe 1 (Insulin-dependent diabetes mellitus) adalah kondisi tubuh ketika pankreas tidak dapat membuat cukup insulin untuk tubuh atau jika tidak ada sama sekali, gula menumpuk di peredaran darah karena tidak dapat diangkut ke dalam sel. Diabetes melitus tipe 1 biasanya muncul pada usia anak-anak atau

remaja dan dapat didiagnosis pada pria maupun wanita. Gejalanya sering muncul dengan cepat dan jika tidak diobati dengan suntikan insulin segera, kondisi ini dapat menjadi sangat parah hingga penderitanya koma.

## b. Diabetes Melitus Tipe 2

Diabetes melitus tipe 2 adalah jenis diabetes yang paling umum, dengan 90-95% penderita berada di atas 40 tahun. Namun, diabetes ini juga bisa muncul pada anak-anak atau remaja. Diabetes melitus tipe 2 meskipun pankreas masih dapat membuat insulin, kualitasnya buruk dan tidak berfungsi dengan baik yang menyebabkan peningkatan gula darah. Meskipun pasien biasanya tidak memerlukan suntikan insulin, mereka harus mengonsumsi obat oral atau tablet, yang berfungsi untuk meningkatkan fungsi insulin, mengurangi jumlah gula dalam darah dan meningkatkan bagaimana hati mengolah gula.

## c. Diabetes Gestational

Diabetes tipe gestasi atau gestational diabetes adalah kondisi yang disebabkan oleh perkembangan hormone pada wanita hamil, yang menyebabkan resistensi insulin. Diabetes melitus gestasional dapat didiagnosis pada trimester kedua atau ketiga kehamilan tanpa gejala diabetes kehamilan yang jelas (Johnson dkk., 2020).

## d. Diabetes Lainnya

Diabetes sekunder atau sebagai akibat dari penyakit lain adalah diabetes lain yang tidak termasuk dalam kelompok di atas. Diabetes ini mengganggu produksi insulin atau mempengaruhi kerja insulin. Gangguan kelenjar adrenal atau hipofisis, penggunaan hormone kortikosteroid, pemakaian beberapa obat antihipertensi atau antikolesterol, beberapa contohnya adalah malnutsi atau infeksi.

### 2. Laboratorium Klinik

# a. Pengertian Laboratorium Klinik

Laboratorium Laboratorium klinik adalah laboratorium kesehatan yang melaksanakan pelayanan pemeriksaan spesimen klinik untuk mendapatkan informasi tentang kesehatan perorangan terutama untuk menunjang upaya diagnosis penyakit, penyembuhan penyakit dan pemulihan kesehatan (Permenkes, 2013)

## b. Tahap Pemeriksaan Laboratorium Klinik

## 1) Tahap Pra Analitik

Tahap pra analitik dilakukan untuk memastikan bahwa sampel dengan akurat mewakili kondisi pasien, mencegah kekeliruan dan menghindari terjadinya pertukaran sampel antar pasien. Kesalahan yang terjadi pada tahap pra analitik dapat mencapai 60-70% (Siregar, 2016). Tahap praanalitik meliputi :

- a) Formulir permintaan pemeriksaan
- b) Persiapan pasien
- c) Pengambilan dan penerimaan spesimen
- d) Penanganan spesimen
- e) Persiapan sampel untuk analisa

## 2) Tahap Analitik

Tahap analitik merupakan tahap pengerjaan pengujian sampel sehingga diperoleh hasil pemeriksaan. Tahap analitik meliputi:

- a) Persiapan reagen
- b) Pipetasi reagen atau sampel
- c) Inkubasi
- d) Pemeriksaan
- e) Pembacaan hasil

## 3) Tahap Pasca Analitik

Tingkat kesalahan pada tahap pasca analitik bisa mencapai 15-20%, yang lebih rendah dibandingkan dengan tahap pra analitik. Kesalahan dalam penulisan hasil pemeriksaan pasien dapat mengakibatkan kesalahan dalam diagnosis oleh dokter. Selain itu, kesalahan dalam pelaporan hasil juga dapat membahayakan keadaan pasien (Siregar, 2016). Tahap pasca analitik meliputi:

a) Verifikasi hasil

- b) Validasi hasil
- c) Cara pencatatan hasil
- d) Cara pelaporan

## 3. Tabung Penampung Darah

Untuk mendapatkan serum dibutuhkan wadah penampung darah yang disebut dengan tabung vakum. Penggunaan sampel serum dimaksudkan untuk menghindari adanya pengaruh antikoagulan terhadap pemeriksaan. Di dalam tabung vakum biasanya ditambahkan zat aditif yang memiliki satu atau lebih fungsi spesifik untuk tujuan pemeriksaan tertentu (Verdiansyah, 2016).

## a. Tabung Serum Separator Tube (SST)

Vacutainer serum separator adalah tabung vakum yang berisi aktivator pembekuan berisi gel yang dapat memisahkan serum dan darah biasa. Waktu yang dibutuhkan untuk mendapatkan serum lebih singkat sekitar 30 menit dengan adanya silika dan gel polimer sebagai pemisah serum, gel pemisah serum yang terletak di ujung tabung berperan sebagai penghalang kimiawi dan fisik yang stabil antara serum dan darah beku sehingga diperoleh kualitas serum yang bagus dan mengurangi resiko timbulnya fibrin yang dapat menyumbat alat (Setiawan dkk., 2021).

### b. Tabung *Rapid Serum Tube* (RST)

Dinding tabung *Rapid Serum Tube* (RST) dilapisi dengan aktivator bekuan berbasis trombin yang memberikan pembekuan

cepat. Tabung RST diperkenalkan untuk mengatasi masalah pembekuan pada sampel serum yang lama (Ucar dkk., 2015). Waktu yang diperlukan untuk pembekuan darah tabung RST adalah 3-5 menit (Yan dkk., 2014).

Tabung RST dan SST memiliki beberapa perbedaan karakteristik. Perbedaan RST dan SST adalah sebagai berikut:

Tabel 1. Perbedaan RST dan SST

| Perbedaan        | RST         | SST         |
|------------------|-------------|-------------|
| Separator Gel    | Gel polimer | Gel polimer |
| Dimensi tabung   | 13x100      | 13x75       |
| _                |             | 13x100      |
|                  |             | 16x100      |
| Volume tabung    | 5 ml        | 3-10 ml     |
| Aktivator bekuan | Thrombin    | Silica      |
| Waktu pembekuan  | 5 menit     | 30 menit    |

Sumber: Ucar, dkk. 2015.

### 4. Serum

## a. Pengertian Serum

Serum adalah cairan darah berwarna kuning jernih yang bebas dari sel dan tanpa fibrinogen (Nuradi dkk., 2019). Fibrinogen diubah menjadi fibrin dengan menghabiskan faktor V, VIII dan protombin selama proses pembekuan. Faktor pembekuan lain dan protein yang tidak ada hubungannya dengan hemostasis tetap ada dalam serum dengan kadar yang sama seperti dalam plasma. Jika serum masih mengandung sisa fibrinogen, produk perombakan fibrinogen atau protombin yang tidak diubah kemungkinan proses pembekuan tidak normal (Subiyono dkk., 2016).

### b. Serum Tidak Normal

## 1) Serum Hemolisis

Hemolisis Hemolisis didefinisikan sebagai gangguan pada membran eritrosit dan menghasilkan lepasnya hemoglobin. Hemolisis dapat mempengaruhi hampir seluruh pemeriksaan kimia klinik di dalam laboratorium, karena serum hemolisis berwarna merah. Warna merah dalam serum dapat menganggu penyerapan cahaya pada saat melewati spesimen pada tes spektrofotometri (Riviana dkk., 2019)

# 2) Serum Lipemik

Serum lipemik adalah serum yang keruh, serum lipemik terjadi akibat peningkatan konsentrasi trigliserida dalam serum. Kekeruhan dapat mempengaruhi absorbansi spektrofotometer pada semua panjang gelombang sehingga menyebabkan kesalahan pada nilai analisa (Rahmawati dkk., 2023).

### 3) Serum Ikterik

Serum ikterik adalah serum yang berwarna kuning coklat akibat adanya hiperbilirubinemia (peningkatan kadar bilirubin dalam darah). Serum ikterik dapat mempengaruhi pengukuran pada panjang gelombang 400-500 nm. pemeriksaan yang didasarkan pada reaksi oksidase atau

peroksidase, seperti glukosa, kolesterol, trigliserida dan asam urat (Sujono dkk., 2023).

### 5. Albumin

## a. Pengertian Albumin

Albumin merupakan protein utama yang terdapat dalam tubuh manusia yang berkisar antara 55-60%. Menurut kamus kedokteran albumin merupakan protein yang larut dalam air dan juga dalam larutan garam konsentrasi sedang. Albumin terdiri dari rantai tunggal polipeptida dan 585 asam amino. Sekitar 40% albumin terdapat dalam plasma dan 60% sisanya terdapat diruang ektrasel. Albumin diproduksi oleh hepatosit yang ada pada hati. Protein ini dapat meningkatkan tekanan osmotik untuk mempertahankan cairan vaskuler. Albumin mengikat dan membawa berbagai macam molekul hidrofobik, seperti kolesterol, asam lemak, bilirubin, obatobatan, racun, ion logam transisi dan gas (Subiyanti, 2017).

## b. Fungsi Albumin

Albumin merupakan substansi terbesar dari protein yang dihasilkan oleh hati. Fungsi albumin adalah mengatur tekanan onkotik, yaitu tekanan yang menjaga agar air tetap berada dalam plasma. Abumin mempunyai peranan penting sebagai pengangkut bahan kimia tertentu termasuk obat-obatan melalui sistem sirkulasi, pengangkut berbagai materi yang tak larut dalam air (bilirubin, asam lemak, dan beberapa macam hormon), membantu metabolisme zat

gizi dan mempercepat pemulihan jaringan sel. Apabila terdapat gangguan fungsi sintesis sel hati maka kadar albumin serum akan menurun (hipoalbumin) terutama apabila terjadi lesi sel hati yang luas dan kronik (Prastowo dkk., 2016; Rosida, 2016)

## c. Faktor yang Mempengaruhi Kadar Albumin

Ada beberapa Faktor utama yang mempengaruhi sintesis albumin seperti asupan makanan yang mengandung protein, tekanan osmotik koloid dan aksi hormon tertentu (misalnya hormon tiroid dan hormon glukortikoid). Faktor yang menyebabkan menurunnya tingkat albumin adalah kekurangan protein, kekurangan energi, kekurangan zink, infeksi dan gangguan hati. Sementara, faktor yang menyebabkan tingginya tingkat albumin adalah dehidrasi, muntah dan diare (Irna dkk., 2023).

### d. Tinjauan Klinis

### 1) Hipoalbuminemia

Hipoalbuminemia adalah kondisi di mana kadar albumin dalam darah turun jauh di bawah nilai normal. Penyebab hipoalbumin diantaranya terdapat kebocoran albumin di tempat lain seperti ginjal, akibat malabsorbsi protein pada usus dan kebocoran melalui kulit pada kasus luka bakar yang luas. Hipoalbumin juga dapat disebabkan intake kurang, peradangan atau infeksi (Rosida, 2016).

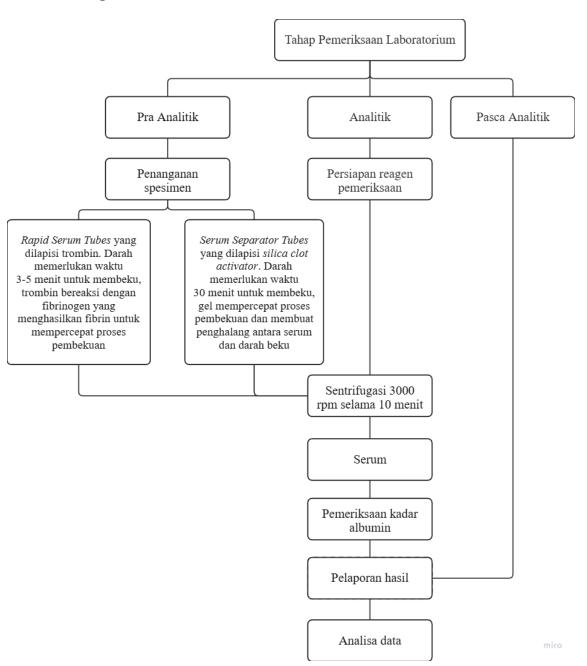
### 2) Hiperalbuminemia

Hiperalbuminemia adalah kondisi yang ditandai dengan peningkatan kadar albumin dalam serum yang melebihi batas normal. Kadar albumin yang tinggi umumnya ditemukan pada individu yang mengalami dehidrasi akut dan syok (Susetyowati dan Andri, 2017)

### e. Pemeriksaan Kadar Albumin

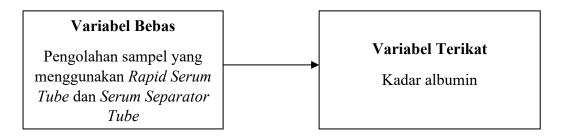
Pemeriksaan kadar albumin serum salah satunya menggunakan metode bromcresol green. Prinsip pemeriksaan metode bromcresol green adalah dengan adanya ikatan anionic dye dan protein albumin pada pH asam yang menghasilkan perubahan warna dari kuning ke hijau, intensitas warna yang terbentuk sebanding dengan konsentrasi albumin pada sampel (Glory, 2025). Bromcresol green (BCG) adalah zat warna dari triphenylmethane family (triarylmethane dyes) yang digunakan sebagai petunjuk pH dan sebagai tracking dye untuk elektroforesis gel agarose DNA. (Ilmiah dkk., 2018).

### f. Nilai Normal Albumin


Nilai rentang untuk usia dewasa adalah 3.81 – 4.65 g/dL atau 35.1 – 46.5 g/L (Glory, 2025). Nilai rentang kadar albumin pada kriteria lainnya dijelaskan pada tabel 2.

Tabel 2. Nilai Normal Albumin

| Kriteria         | Nilai Normal  |
|------------------|---------------|
| Wanita dewasa    | 3,5-5,0 g/dL  |
| Laki-laki dewasa | 3,8-5,1  g/dL |
| Anak             | 4,0-5,8 g/dL  |
| Bayi             | 4,4-5,4 g/dL  |
| Bayi baru lahir  | 2,9-5,4 g/dL  |


Sumber: Sutedjo, 2013

# B. Kerangka Teori



Gambar 1. Kerangka Teori

# C. Hubungan Antar Variabel



Gambar 2. Hubungan Antar Variabel

# D. Hipotesis Penelitian

Hasil pemeriksaan kadar albumin pada penderita diabetes melitus menggunakan tabung *Serum Seraparator Tube* (SST) dan *Rapid Serum Tube* (RST) didapatkan hasil yang sama.

### **BAB III**

### **METODE PENELITIAN**

### A. Jenis dan Desain Penelitian

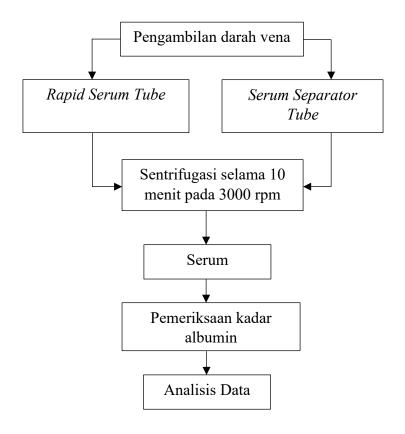
### 1. Jenis Penelitian

Jenis penelitian yang digunakan dalam penelitian ini adalah pendekatan kuantitatif dengan rancangan *pre-experimental design* karena belum merupakan eksperimen sesungguhnya mengingat masih ada variabel tambahan yang dapat mempengaruhi pembentukan variabel terikat (Hikmawari, 2020).

### 2. Desain Penelitian

Desain penelitian yang digunakan adalah *Static Group Comparison*. Pada kelompok eksperimen dimulai dengan melakukan intervensi atau perlakuan (X) selanjutnya dilakukan pengukuran (O2). Hasil pengukuran pada kelompok yang diberikan perlakuan dibandingkan dengan hasil pengukuran pada kelompok kontrol, kelompok kontrol tidak mendapat perlakuan atau interverensi (Anggereni, 2020).

| Perlakuan |    | Post test |  |
|-----------|----|-----------|--|
| X         | O2 | O2        |  |
|           |    |           |  |


Gambar 3. Desain Penelitian

Keterangan:

X: Rapid Serum Tube (RST)

O2: Serum Separator Tube (SST)

## **B.** Alur Penelitian



Gambar 4. Alur Penelitian

# C. Subjek dan Objek Penelitian

# 1. Subjek Penelitian

Subjek penelitian ini adalah pasien yang berada di wilayah Puskesmas Mantrijeron, Mantrijeron, Kota Yogyakarta, D.I. Yogyakarta.

# 2. Objek Penelitian

Objek pada penelitian ini adalah darah vena penderita diabetes melitus yang ditampung menggunakan *Rapid Serum Tube* dan *Serum Separator Tube*. Kemudian diperiksa kadar albumin serumnya.

# 3. Besar Sampel

Karena populasi sangat besar (*infinite population*), tidak mungkin dilakukan penelitian terhadap seluruh unit populasi tersebut, populasi bersifat homogen maka tidak perlu seluruh unit populasi diteliti (Eddy dan Iche, 2020). Sampel pada penelitian ini diambil dengan cara dihitung dari besarnya populasi yang memenuhi kriteria inklusi dan eksklusi adalah sejumlah 829. Besar sampel dalam populasi yang diambil dalam penelitian ini di hitung dengan rumus Slovin:

$$n = \frac{N}{1 + N (e)^2}$$

$$n = \frac{829}{1 + 829 (5\%)^2}$$

$$n = \frac{829}{2,0725}$$

$$n = 269,8 (270)$$

### Keterangan:

N : Besar populasi

n : Besar sampel

e : Presentasi toleransi kesalahan pengambilan sampel

Namun jumlah sampel dengan menggunakan rumus perhitungan slovin tersebut masih terlalu bebas untuk peneliti ambil karena keterbatasan waktu, biaya dan tenaga. Oleh karena itu dilakukanlah penentuan besar yang mengikuti saran Roscoe pada buku karya Sugiyono (2020) yang menyatakan "Ukuran sampel yang layak dalam penelitian adalah antara 30 sampai 500 sampel" maka peneliti menentukan jumlah sampel yang akan digunakan sesuai dengan kemampuan penelti yang berdasarkan jumlah sampel penelitian terdahulu adalah 30 sampel.

# 4. Teknik Sampling

Teknik pengambilan sampel dalam penelitian ini adalah consecutive sampling. Pada consecutive sampling, semua responden yang datang dan memenuhi kriteria pemilihan dimasukan dalam penelitian sampai jumlah responden yang diperlukan terpenuhi. Dengan menggunakan teknik tersebut, maka populasi memiliki kesempatan yang sama untuk dilakukan penelitian (Sastroasmoro dan Ismael, 2016)

# D. Waktu dan Tempat Penelitian

### 1. Waktu Penelitian

Penelitian ini akan dilaksanakan pada bulan April 2025.

# 2. Tempat Penelitian

# a. Tempat Pemeriksaan Sampel

Pemeriksaan sampel serum akan dilaksanakan di Laboratorium Kimia Klinik Jurusan Teknologi Laboratorium Medis Poltekkes Kemenkes Yogyakarta.

### b. Tempat Pengambilan Sampel

Tempat pengambilan sampel penderita diabetes melitus akan dilaksanakan di Puskesmas Mantrijeron, Mantrijeron, Kota Yogyakarta, D.I. Yogyakarta.

### E. Variabel Penelitian

### 1. Variabel Bebas

Variabel bebas pada penelitian ini adalah penggunaan jenis tabung *Rapid Serum Tube* (RST) dan *Serum Separator Tube* (SST).

### 2. Variabel Terikat

Variabel terikat pada penelitian ini adalah kadar albumin pada serum penderita diabetes melitus.

# F. Definisi Operasional Variabel Penelitian

## 1. Variabel Bebas

Variabel bebas adalah variabel yang mempengaruhi variabel terikat atau faktor yang menjadi sebab perubahan dalam variabel terikat. Variabel bebas pada penelitian ini adalah jenis tabung yaitu Rapid Serum Tube (RST) dan Serum Separator Tube (SST).

24

Responden diambil darah vena menggunakan tabung RST dan SST

kemudian dinyalakan timer untuk mengukur waktu pembekuan darah,

setelah darah beku tabung langsung disentrifus dengan kecepatan

3000 rpm selama 10 menit.

Satuan : -

Skala Data : Nominal

2. Variabel Terikat

Variabel terikat adalah variabel yang dipengaruhi oleh

variabel bebas atau faktor yang diamati untuk menentukan adanya

pengaruh oleh variabel bebas. Variabel terikat pada penelitian ini

adalah kadar albumin serum yang menggunakan tabung RST dan SST

kemudian diperiksa menggunakan metode semi-automatic dye-

binding bromcresol green (BCG) dengan alat spektrofotometer

mindray-B88A.

Satuan : g/dL

Skala Data : Rasio

G. Jenis dan Teknik Pengumpulan Data

1. Jenis Pengumpulan Data

Jenis pengumpulan data yang digunakan oleh peneliti adalah

data primer, yaitu data yang didapatkan secara langsung oleh peneliti.

Data ini diperoleh dari pemeriksaan kadar albumin serum pada pasien

diabetes melitus dengan tabung RST dan SST.

# 2. Teknik Pengumpulan Data

Tenik pengumpulan data yang digunakan dalam penelitian ini adalah hasil pemeriksaan kadar albumin serum yang segera diperiksa dalam tabung RST dan tabung SST dengan menggunakan alat spektrofotometer mindray-B88A.

### H. Instrumen dan Bahan Peneletian

### 1. Alat:

- a. Spektrofotometer mindray-B88A
- b. Tabung reaksi
- c. Mikropipet
- d. Tip
- e. Coolbox
- f. centrifuge
- g. Holder
- h. Timer
- i. Jarum Vakutener
- j. Torniquet
- k. Alkohol swab
- 1. Kapas kering
- m. Plester
- n. Tabung RST dan SST
- o. Cup serum
- p. Tisu

### 2. Bahan:

Sampel serum pasien diabetes melitus, serum kontrol, akuades dan reagen pemeriksaan kadar albumin metode *bromcresol green* (BCG).

Tabel 3. Komposisi Reagen Kit Albumin

| No | Reagen                                 | Konsentrasi |
|----|----------------------------------------|-------------|
| 1. | Reagen Albumin Succinate buffer pH 4,2 | 75 mmol/L   |
|    | Bromocresol green                      | 0,12 mmol/L |
|    | Tensioactive                           | 2 g/l (w/v) |
| 2. | Albumin standard                       | 5 gr/dL     |

Sumber: Glory, 2025.

# I. Uji Validitas Instrumen

Alat ukur yang digunakan dalam penelitian ini adalah spektrofotometer Mindray BA-88A Semiautomatic Chemistry Analyzer yang terdapat di laboratorium Kimia Klinik Jurusan Teknologi Laboratorium Medis Poltekkes Kemenkes Yogyakarta. Uji validitas dilakukan dengan menggunakan serum kontrol yang diperiksa sebelum alat digunakan untuk pemeriksaan sampel. Validitas hasil pemeriksaan yang dilakukan dengan menggunakan alat ukur tersebut dibuktikan dengan hasil serum kontrol yang sesuai dengan nilai range control. Jika hasil pemeriksaan dengan serum kontrol tidak masuk dalam nilai range control maka perlu dilakukan evaluasi. Evaluasi dilakukan terhadap alat dan bahan yang digunakan dalam penelitian ini seperti reagen, spektrofotometer dan melakukan evaluasi langkah kerja pemeriksaan kadar albumin.

### J. Prosedur Penelitian

## 1. Tahap Persiapan

### a. Perizinan

- Perizinan untuk menggunakan Laboratorium Kimia Klinik Jurusan Teknologi Laboratorium Medis Polteknik Kesehatan Kementerian Kesehatan Yogyakarta.
- 2) Pengurusan perizinan untuk melakukan pengambilan sampel penelitian di Puskesmas Mantrijeron, Mantrijeron, Kota Yogyakarta, D.I. Yogyakarta. Didapatkan izin penelitian dari Dinas Kesehatan Kota Yogyakarta pada tanggal 21 Februari 2025 dengan nomor 000.9/2032.

### b. Disiapkan Alat dan Bahan

c. Disiapkan pendataan responden untuk memperoleh informasi mengenai kondisi tubuh, riwayat penyakit dan usia serta memberikan penjelasan mengenai *Informed Consent* sebelum dilakukan pengambilan darah agar sesuai dengan kriteria yang diinginkan.

## 2. Tahap Pelaksanaan

### a. Tahap Pelaksanaan Kontrol Kualitas

 Dilakukan pengukuran kadar albumin dengan serum kontrol komersial setiap akan dilakukan pemeriksaan.

- 2) Dibandingkan antara kadar kadar albumin pada serum kontrol komersial dengan nilai *range control*.
- 3) Jika hasil pengukuran kadar albumin dengan serum kontrol sudah masuk nilai *range control* maka pemeriksaan dapat dilanjutkan, namun apabila hasil yang diperoleh dari pengukuran kadar albumin dengan serum kontrol tidak masuk nilai *range control* maka perlu dilakukan evaluasi.

# b. Tahap pengambilan darah vena

- Dipasang jarum pada holder dan pastikan jarum terpasang dengan benar
- 2) Dipasang torniquet pada lengan responden dengan jarak kira-kira 10 cm dari lipatan siku dan minta responden untuk mengepalkan tangan
- 3) Dipilih vena pada bagian median cubital atau chepalic
- 4) Dibersihkan kulit pada bagian yang akan diambil darahnya dengan alkohol *swab* dan dibiarkan kering untuk mencegah hemolisis. Kulit yang sudah dibersihkan tidak boleh dipegang lagi agar terbabas dari kuman.
- Ditusuk vena dengan posisi jarum mengahadap ke atas dengan sudut kemiringan antara jarum dan kulit 15 derajat.

- 6) Dimasukkan tabung ke dalam holder kemudian tekan dan tunggu hingga darah berhenti mengalir.
- Setelah tabung pertama terisi penuh, cabut dan ganti dengan tabung kedua
- 8) Dilepas torniquet dan minta responden melepas kepalan tangannya
- Tempat suntikan ditahan dengan kapas dan lepaskan jarum dari lengan pasien
- 10) Ditekan bagian bekas suntikan selama beberapa saat kemudian plester bekas suntikan

## c. Tahap pembuatan serum

- Tabung sampel darah SST didiamkan selama 10-30 menit pada suhu ruang kemudian disentrifus pada kecepatan 3000 rpm selama 10 menit.
- 2) Tabung sampel darah RST didiamkan selama 1-5 menit pada suhu ruang kemudian disentrifus pada kecepatan 3000 rpm selama 10 menit.
- Serum yang terbentuk segera dipisahkan dari endapan dengan menggunakan mikropipet dan ditampung dalam serum cup

## d. Pemeriksaan Kadar Albumin

- 1) Disiapkan alat dan bahan yang akan digunakan
- 2) Dibuat larutan pemeriksaan albumin sebagai berikut:

Tabel 4. Prosedur Pemeriksaan Albumin

|          | Water<br>Blank | Sampel       | Standard      | Reagent<br>Blank |
|----------|----------------|--------------|---------------|------------------|
| Sampel   | -              | 10 μL        | -             | -                |
| Aquades  | $450~\mu L$    | -            | -             | -                |
| Standard | -              | -            | 10 μL         | -                |
| Reagen   | -              | $2000~\mu L$ | $2000\;\mu L$ | $450~\mu L$      |

- Inkubasi larutan tersebut selama 1 menit pada suhu ruang
   (25°C)
- Dilakukan pemeriksaan albumin dengan alat fotometer
   Mindray BA-88A
- Klik menu Test → pilih parameter pemeriksaan albumin
   → periksa pada gelombang 630 nm → untuk melihat
   hasil tes ada pada kolom conc.
- 6) Pilih Water Blank → siapkan aquades ke dalam tabung reaksi lalu hisapkan aquades ke selang penghisap dengan menekan tombol hisap
- 7) Pilih Reagent Blank → siapkan reagent blank ke dalam tabung reaksi, lalu hisapkan ke selang penghisap sample dengan menekan tombol hisap
- 8) Pilih sample → siapkan sampel pasien yang sudah dikerjakan dan dicampur reagen ke dalam tabung reaksi, lalu hisapkan sampel pasien ke selang penghisp dengan menekan tombol hisap.
- 9) Dibaca hasil tes pada kolom conc.

# K. Manajemen Data

### 1. Analisis Deskriptif

Data yang diperoleh berupa hasil pemeriksaan kadar albumin dari darah yang diambil dengan tabung RST dan SST disajikan dalam bentuk tabel dan grafik.

## 2. Uji Statistik

Data dianalisis secara statistik menggunakan uji *Saphiro Wilk* untuk mengetahui apakah data berdistribusi normal atau tidak. Data berdistribusi normal apabila nilai  $\operatorname{Sig} \geq 0,05$ , sedangkan data tidak berdistribusi normal apabila nilai  $\operatorname{sig} < 0,05$ . Ketika didapatkan data berdistribusi normal, maka dilanjutkan dengan uji *Independent Samples t Test* sehingga didapatkan hasil *Mean Difference* dan *Confidence Interval*, jika data tidak berdistribusi normal dilakukan uji *Mann Whitney U*. Pada uji ini hipotesis diterima apabila asymp  $\operatorname{sig} \geq 0,05$ .

### L. Etika Penelitian

Penelitian ini dilakukan sejujur-jujurnya berdasarkan kondisi yang benar-benar terjadi di lapangan. Penelitian ini dilakukan dengan etika penelitian yaitu:

### 1. Ethical Clearence

Peneliti ini telah mendapatkan persetujuan etik penelitian dari Komite Etik Politeknik Kesehatan Kementerian Kesehatan Yogyakarta pada tanggal 04 Februari dengan nomor No.DP.04.03/e-KEPK.1/122/2025.

# 2. Surat Penjelasan Sebelum Persetujuan (PSP)

Peneliti akan memberikan pejelasan atau arahan yang singkat dan jelas mengenai tujuan, maksud, durasi dan prosedur penelitian kepada calon partisipan. Peneliti juga menjamin kerahasian identitas dan inforrmasi lainnya terkait calon responden atau subjek penelitian. Partisipasi dalam penelitian ini bersifat sukarela.

### 3. Informed consent

Calon subjek penelitian atau responden akan memberikan informed consent ketika mereka menyetujui peneliti untuk melakukan prosedur medis tertentu pada mereka. Persetujuan diberikan setelah melalui komunikasi anatara dua belah pihak. Peneliti memberikan arahan tentang penelitian yang akan dilakukan, prosedur medis, alasan dibalik tindakan medis tersebut, alternatif tindakan, serta risiko bahaya dan prognosis dari tindakan yang akan dilakukan. Calon subjek memberikan persetujuan tanpa adanya paksaan. Setiap keputusan yang dibuat oleh calon subjek penelitian harus dihormati.