BABI

PENDAHULUAN

A. Latar Belakang

Lalat termasuk salah satu jenis serangga vektor pembawa patogen yang berperan penting dalam penyebaran penyakit. Lalat termasuk ke dalam kelas serangga yang memiliki dua sayap dan merupakan kelompok serangga pembawa penyakit (Permenkes, 2023). Secara umum, lalat berkembang biak pada lingkungan di luar permukiman manusia yang kaya akan bakteri serta organisme patogen lainnya, seperti vegetasi yang membusuk, kotoran hewan, dan sampah. Lalat berperan dalam penyebaran agen penyebab penyakit secara mekanis yang menimbulkan gangguan kesehatan pada manusia maupun hewan. Peran ini muncul akibat kebiasaan lalat berkembang biak dan pola makannya yang sangat beragam dan tersebar luas (Hadi & Koesharto, 2006).

Keberadaan lalat dapat menyebabkan dampak buruk terhadap kesehatan masyarakat. Beberapa penyakit yang dapat ditularkan oleh lalat antara lain adalah tifus, diare, disentri, dan kolera (Winarno, 2006). Lalat menyebarkan penyakit dengan menyebarkan kotoran ke makanan. Oleh karena itu, pengendalian populasi lalat harus dilakukan untuk menjaga kesehatan dan kebersihan. Langkah awal dalam pengendalian populasi lalat adalah mengukur kepadatan lalat. Alat yang digunakan untuk mengukur kepadatan lalat adalah dengan menggunakan *fly grill*. Berdasarkan Permenkes Nomor 2 Tahun 2023 tentang Satuan Baku Mutu

Kesehatan Lingkungan (SBMKL) ditetapkan bahwa indeks populasi lalat adalah kurang dari 2 ekor per *block grill*.

Pengukuran kepadatan lalat secara konvensional menggunakan *fly grill* standar memiliki beberapa keterbatasan. Keterbatasan *fly grill* konvensional yaitu kemampuan pengamat dalam menghitung lalat yang bergerak cepat. Pengamatan manual juga membutuhkan waktu yang lama dan rentan terhadap subjektivitas pengamat.

Teknologi *image processing* seperti sensor kamera dan algoritma pengambilan data dengan *computer vision* dan *deep learning* merupakan alat yang berharga untuk memahami pergerakan serangga (Bjerge, Alison, dkk., 2023). Penggunaan teknologi *image processing* (pemrosesan citra digital) dalam sistem deteksi lalat merupakan langkah inovatif dalam bidang monitoring dan kebersihan lingkungan. Teknologi ini memiliki sistem untuk mengenali, melacak, dan menghitung lalat berdasarkan karakteristik visual seperti bentuk tubuh, pola sayap, ukuran, dan warna, yang kemudian dianalisis secara otomatis menggunakan algoritma pengolahan citra.

Salah satu manfaat utama penerapan *image processing* adalah efisiensi waktu dan tenaga dalam proses deteksi dibandingkan dengan metode konvensional. Penelitian Deng dkk., (2018) menunjukkan bahwa *image processing* metode deteksi Support Vector Machines (SVM) dapat secara tepat menargetkan dan mendeteksi wilayah objek dalam gambar dari lingkungan alam yang kompleks. Metode SVM menunjukkan kinerja identifikasi yang baik dengan akurasi 85,5%.

Teknologi *image processing* juga dapat diintegrasikan dengan sensor lain seperti inframerah atau kamera termal untuk meningkatkan akurasi deteksi di lingkungan dengan pencahayaan yang buruk atau pada waktu malam hari. Penelitian Dey dkk., (2016) menunjukkan bahwa sistem berbasis *image processing* seperti penghilangan noise dan peningkatan kontras digunakan untuk meningkatkan kualitas gambar memperoleh akurasi hingga 98,46%.

Berdasarkan latar belakang tersebut, peneliti berinisiatif untuk melakukan penelitian pengukuran kepadatan lalat menggunakan metode *image processing* pada *fly grill* dibandingkan pengukuran kepadatan lalat metode manual. Penelitian ini diharapkan dapat berkontribusi dalam pengembangan metode pengukuran kepadatan lalat yang lebih efektif. Penelitian dilakukan untuk mengetahui peningkatan akurasi penerapan *image processing* pada *fly grill* dalam pengukuran kepadatan lalat dibandingkan dengan metode pengukuran manual.

B. Rumusan Masalah

Berdasarkan uraian latar belakang di atas, maka rumusan masalah penelitian ini adalah: "Apakah *image processing* pada *fly grill* dapat meningkatkan akurasi pengukuran kepadatan lalat dibandingkan dengan metode pengukuran manual?"

C. Tujuan Penelitian

1. Tujuan Umum

Mengetahui peningkatan akurasi dengan penerapan *image processing* pada *fly grill* dalam pengukuran kepadatan lalat dibandingkan dengan metode pengukuran manual.

2. Tujuan Khusus

- a. Mengetahui hasil pengukuran kepadatan lalat pada *fly grill* metode manual, metode *image processing*, dan metode rekam video.
- b. Mengetahui hasil perbandingan akurasi pengukuran kepadatan lalat pada *fly grill* antara metode manual dengan metode rekam video.
- c. Mengetahui hasil perbandingan akurasi pengukuran kepadatan lalat pada *fly grill* antara *image processing* dengan metode rekam video.

D. Ruang Lingkup

1. Lingkup Keilmuan

Lingkup keilmuan penelitian ini adalah lingkup ilmu kesehatan lingkungan terutama pada bidang Pengendalian Vektor dan Binatang Pengganggu.

2. Materi

Materi dalam peneltian ini adalah lalat dan mencakup materi tentang pengukuran kepadatan lalat menggunakan fly grill image processing.

3. Obyek

Obyek dalam penelitian ini adalah *image processing* yang digunakan untuk fly grill dalam perhitungan kepadatan lalat.

4. Lokasi

Lokasi penelitian di TPST Piyungan yang berada di Ngablak, Sitimulyo, Kec. Piyungan, Kabupaten Bantul, Daerah Istimewa Yogyakarta.

5. Waktu

Waktu penelitian ini dilakukan pada bulan Maret – Juni 2025.

E. Manfaat Penelitian

1. Bagi Ilmu Pengetahuan

Menambah informasi mengenai penggunaan *image processing* sebagai alat pengukuran kepadatan lalat.

2. Bagi Jurusan Kesehatan Lingkungan

Menambah inovasi dalam memanfaatkan *image processing* sebagai alat bantu perhitungan kepadatan lalat.

3. Bagi Peneliti

Meningkatkan kompetensi dalam pengembangan sistem instrumentasi pengukuran kepadatan lalat.

F. Keaslian Penelitian

Penelitian tentang "Penerapan Media *Image Processing* Pada *Fly Grill* Untuk Meningkatkan Akurasi Pengukuran Kepadatan Lalat" ini belum pernah dilakukan sebelumnya. Beberapa penelitian sejenis berupa penerapan yang sudah pernah dilakukan yaitu sebagai berikut.

Tabel 1. Keaslian Penelitian

No	Nama Penelitian,	Hasil	Persamaan	Perbedaan
NO	Tahun, Judul	Hasii	Penelitian	Penelitian
(1)	(2)	(3)	(4)	(5)
1.	(Thenmozhi &	Dalam penelitian	Sama-sama	Penelitian
	Reddy, 2017)	ini, vektor berbasis	menggunakan	sebelumnya
	Image processing	bentuk dirancang	image	berfokus pada
	techniques for	untuk mendeteksi	processing	mendeteksi
	insect shape	bentuk serangga	untuk deteksi	serangga di
	detection in field	tanaman tebu	objek dan	area tanaman
	crops	dengan	pergerakan.	tebu,
		menggunakan		sedangkan
		teknik pemrosesan		penelitian ini
		gambar. Dalam		berfokus pada
		proses ini, berbagai		pengukuran
		gambar serangga		kepadatan
		tebu yang berbeda		lalat.
		diuji dan terbukti		
		berhasil.		
2.	(Zhu dkk., 2018)	Dalam penelitian	Sama-sama	Penelitian
	Insect	ini, identifikasi dan	memanfaatkan	sebelumnya
	Identification and	penghitungan	image	berfokus pada
	Counting in	serangga dan	processing	serangga pada
	Stored Grain:	aplikasi berbasis	untuk deteksi	gabah,
	ImageProcessing	Android disajikan,	serangga.	sedangkan
	Approach and	di mana jendela		penelitian ini
	Application	geser digunakan		berfokus pada
	Embedded in	dalam unit pra		perhitungan
	Smartphones	proses yang dapat		kepadatan
		memaksimalkan		lalat.

Tabel 1. Keaslian Penelitian (lanjutan)

No	Nama Penelitian,	Hagil	Persamaan	Perbedaan
INU	Tahun, Judul	Hasil	Penelitian	Penelitian
(1)	(2)	(3)	(4)	(5)
		perbedaan antara		
		target yang		
		terdeteksi dan latar		
		belakang serta		
		menghilangkan		
		kecerahan latar		
		belakang yang		
		tidak merata.		
3.	(Deng dkk., 2018)	Hasil eksperimen	Sama-sama	Penelitian
	Research on	menunjukkan	memanfaatkan	sebelumnya
	insect pest image	bahwa metode	image	bertujuan
	detection and	deteksi Support	processing	untuk
	recognition based	Vector Machines	untuk deteksi	mendeteksi
	on bio-inspired	(SVM) dapat secara	serangga.	hama
	methods	tepat menargetkan		serangga,
		dan mendeteksi		sedangkan
		wilayah objek		penelitian ini
		dalam gambar dari		berfokus pada
		lingkungan alam		perhitungan
		yang kompleks.		kepadatan
		Metode SVM		lalat.
		menunjukkan		
		kinerja pengenalan		
		yang baik dengan		
		akurasi 85,5%.		

Tabel 1. Keaslian Penelitian (lanjutan)

No	Nama Penelitian,	Hasil	Persamaan	Perbedaan
NO	Tahun, Judul		Penelitian	Penelitian
(1)	(2)	(3)	(4)	(5)
4.	(Yao dkk., 2012)	Dalam penelitian	Sama-sama	Penelitian
	An Insect	ini, peneliti	memanfaatkan	sebelumnya
	Imaging System	mengembangkan	image	berfokus pada
	to Automate Rice	sistem pencitraan	processing	serangga
	Light-Trap Pest	serangga untuk	untuk deteksi	hama padi,
	Identification	identifikasi hama	serangga.	sedangkan
		padi. Peneliti		penelitian ini
		menguji 4 spesies		berfokus pada
		hama padi		perhitungan
		<i>Lepidoptera</i> dan		kepadatan
		mencapai tingkat		lalat.
		identifikasi rata-		
		rata 97,5%.		
5.	(Wen & Guyer,	Penelitian ini	Sama-sama	Penelitian
	2012)	bertujuan untuk	memanfaatkan	sebelumnya
	Image-based	meningkatkan	image	bertujuan
	orchard insect	metode otomatis	processing	untuk
	automated	yang lebih kuat dan	untuk deteksi	mendeteksi
	identification and	dapat bekerja pada	serangga.	hama
	classification	gambar serangga		serangga,
	method	lapangan		sedangkan
		mengingat latar		penelitian ini
		belakang gambar		berfokus pada
		yang berantakan,		perhitungan
		fitur serangga yang		kepadatan
		hilang, dan		lalat.

Tabel 1. Keaslian Penelitian (lanjutan)

No	Nama Penelitian,	Hasil	Persamaan	Perbedaan
	Tahun, Judul		Penelitian	Penelitian
(1)	(2)	(3)	(4)	(5)
		perubahan pose dan		
		ukuran serangga		
		yang bervariasi.		
		Hasil eksperimen		
		pada klasifikasi		
		citra serangga yang		
		dikumpulkan di		
		lapangan dengan		
		model kombinasi		
		mencapai tingkat		
		klasifikasi 86,6%		
		dengan citra		
		serangga yang		
		dikumpulkan di		
		lapangan untuk		
		penelitian		