BAB III

METODE PENELITIAN

A. Jenis dan Desain Penelitian

1. Jenis Penelitian

Jenis penelitian ini adalah penelitian pre-eksperimen. Pada penelitian pre-eksperimen belum merupakan eksperimen yang sebenarnya, sampel tidak dipilih secara random (Notoatmodjo, 2018).

2. Desain Penelitian

Desain penelitian yang digunakan adalah *Instact Group*Comparison. Instact Group Comparison merupakan penelitian dimana terdapat satu kelompok, setengah sebagai kelompok eksperimen dan lainnya sebagai kontrol.

X	O1
	O2

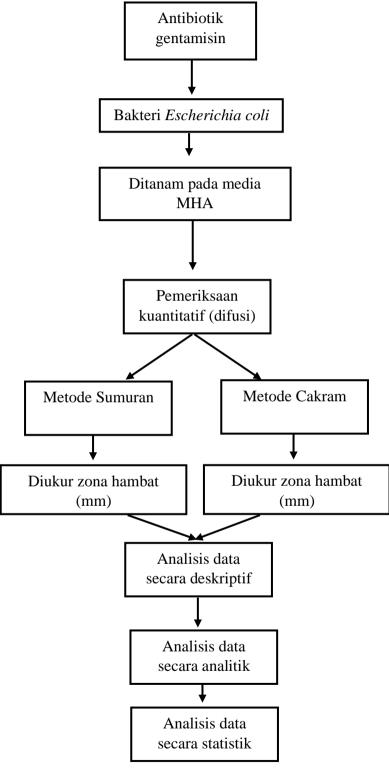
O1 : Diameter zona hambat menggunakan metode cakram

O2 : Diameter zona hambat menggunakan metode sumuran

Agar penelitian lebih dipercaya, maka diperlukan suatu pengulangan. Minimal pengulangan dapat dihitung dengan rumus Ferderer. Rumus ferderer yang digunakan adalah:

Menurut Hanafiah (2014), penentuan banyaknya pengulangan pada penelitian ini digunakan rumus Federer sebagai berikut:

$$(t-1)(r-1) \ge 15$$


Dimana r adalah banyaknya pengulangan dan t adalah jumlah kelompok perlakuan.

Berdasarkan rumus Federer, maka dapat dihitung banyaknya pengulangan yang dapat dilakukan yaitu:

$$(r-1)(t-1) \ge 15$$

 $(r-1)(2-1) \ge 15$
 $(r-1)1 \ge 15$
 $r-1 \ge 15$
 $r \ge 16$

Hasil perhitungan menggunakan rumus Federer diatas, diperoleh banyaknya pengulangan minimal adalah 16 kali. Pada penelitian ini peneliti akan melakukan pengulangan sebanyak 16 kali pada masing – masing metode, sehingga didapatkan 32 data.

B. Alur Penelitian

Gambar 5. Alur Penelitian

C. Populasi dan Sampel

1. Subjek Penelitian

Subjek dari penelitian ini adalah antibiotik gentamisin.

2. Objek Penelitian

Objek penelitian ini adalah bakteri *Escherichia coli* yang dibeli di BLKK Yogyakarta.

D. Waktu dan Tempat penelitian

1. Tempat Penelitian

- a. Penelitian dilakukan di Laboratorium Bakteriologi Jurusan Teknologi
 Laboratorium Medis Poltekkes Kemenkes Yogyakarta.
- b. Pembelian bakteri *Escherichia coli* dilakukan di Balai Laboratorium
 Klinik dan Kalibrasi Yogyakarta.

2. Waktu Penelitian

Penelitian ini dilakukan pada bulan April 2025

E. Variabel Penelitian

1. Variabel bebas (variable independent)

Variabel bebas dalam penelitian ini adalah metode difusi cakram dan sumuran.

2. Variabel terikat (variable dependent)

Variabel terikat dalam penelitian ini adalah diameter zona hambat Bakteri Escherichia coli.

3. Variabel terkendali

29

a. Kontaminan

b. Kepadatan koloni bakteri

c. Ketebalan media

d. Suhu inkubasi

e. Waktu inkubasi

F. Definisi Operasional Variabel

1. Variabel bebas

Variabel bebas merupakan variabel yang mempengaruhi variabel

terikat atau dependen (Sugiyono, 2013). Variabel bebas pada penelitian ini

adalah antibiotik gentamisin yang diuji dengan metode difusi cakram dan

sumuran.

a. Metode sumuran adalah cara pemeriksaan daya hambat untuk menemukan

besar diameter zona hambat dengan menggunakan lubang sumuran sebagai

tempat diberikannya agen anti bakteri.

Satuan: mm

Skala: rasio

b. Metode kirby bauer (cakram) adalah cara pemeriksaan daya hambat untuk

menemukan besar diameter zona hambat dengan menggunakan kertas disk

sebagai tempat diberikannya agen anti bakteri.

Satuan: mm

Skala: rasio

2. Variabel terikat

Variabel terikat adalah suatu variabel yang dipengaruhi oleh variabel bebas. Variabel terikat timbul sebagai akibat dari variabel bebas (Sugiyono, 2013).

- a. Daya hambat adalah kemampuan aktivitas anti bakteri untuk melakukan penghambatan pertumbuhan mikroorganisme bakteri.
- b. Diameter zona hambat adalah daerah jernih yang tidak memperlihatkan adanya pertumbuhan Bakteri *Escherichia coli* yang dapat diukur dengan jangka sorong dalam satuan mm.

3. Variabel Terkendali

- a. Kontaminan adalah bakteri selain Escherichia coli yang dapat tumbuh pada media padat. Kehadiran kontaminan ini berpotensi memengaruhi hasil penelitian. Masalah ini dapat diatasi dengan menerapkan metode aseptik serta melakukan sterilisasi terhadap alat dan bahan yang digunakan.
- b. Kepadatan koloni bakteri mengacu pada jarak antar koloni yang tumbuh pada media $Mueller\ Hinton\ Agar\ (MHA)$. Pengendalian kepadatan ini dilakukan dengan menyiapkan suspensi bakteri sesuai dengan standar kekeruhan $McFarland\ 0.5$ yang setara dengan $1.5\times10^8\ CFU/ml$.
- c. Ketebalan media adalah ukuran tebal media MHA yang digunakan untuk pertumbuhan bakteri *Escherichia coli*. Dikendalikan dengan menyamakan volume media saat dibuat, yaitu 20 ml media MHA pada setiap cawan petri.

- d. Suhu inkubasi adalah derajat panas suatu inkubator. Hal ini dapat dikendalikan dengan mengatur suhu inkubator sesuai dengan aturan yang ditentukan.
- e. Waktu inkubasi adalah rentang waktu antara inokulasi bakteri sampai pertumbuhan koloni dengan karakteristik tertentu. Hal ini dapat dikendalikan dengan waktu inkubasi yang tepat dan tidak melebihi waktu yang ditentukan.

G. Jenis dan Teknik Pengumpulan Data

Teknik penelitian ini merupakan pre eksperimem yang menggunakan desain *Intact Group Comparison*. Penelitian dilakukan dengan mengukur zona hambat antibiotik gentamisin menggunakan dua metode, yaitu metode *Kirby-Bauer* (cakram) dan metode *well diffusion* (sumuran).

Penelitian ini menggunakan data primer yang diperoleh langsung oleh peneliti melalui pemeriksaan mandiri. Data dikumpulkan dari hasil pengukuran diameter zona hambat pertumbuhan Bakteri *Escherichia coli* setelah diberi perlakuan antibiotik gentamisin dengan menggunakan dua metode.

H. Alat dan Bahan Penelitian

1. Alat

a. Cawan petri

m. Jangka sorong

b. Gelas kimia

n. Autoclave

c. Gelas ukur

o. Batang pengaduk

d. Ose steril

p. Sendok penyu

e. Pipet ukur

q. Kertas timbang

- f. Mortar dan alu
- r. Mikropipet dan tip

g. Lampu spirtus

s. Neraca analitik

h. Pinset,

- t. Mikropipet dan tip
- i. Labu erlenmayer
- u. Standar kekeruhan
- i. Neraca analitik
- v. Pipet ukur
- k. Lidi kapas steril
- w. Rabung reaksi

l. Oven, korek

x. Tabung tutup ulir

2. Bahan

- a. Antibiotik gentamisin
- b. Biakan Bakteri Escherichia coli
- c. Aquades
- d. Paper disk
- e. Media Mueller Hinton Agar (MHA)
- f. BaCl₂
- g. H₂SO₄
- h. NaCl fisiologis

I. Uji Validitas dan Reliabilitas

Uji validitas dan reliabilitas penting dilakukan pada instrumen penelitian untuk memastikan data yang dihasilkan valid dan reliabel. Instrumen yang valid adalah alat ukur yang mampu mengukur apa yang seharusnya diukur. Sehingga diperoleh hasil data yang valid, yaitu nilai yang terukur pada alat sama dengan nilai sebenarnya. Sementara itu,

instrumen yang reliabel adalah alat ukur memberikan hasil pengukuran yang tetap dan konsisten pada pengukuran berulang (Notoatmodjo, 2010).

Penelitian ini menggunakan jangka sorong sebagai alat ukur diameter zona hambat bakteri *Escherichia coli* dan dinyatakan dalam satuan milimeter. Diameter zona hambat diukur dari tepi atas ke tepi bawah zona jernih dengan melewati bagian tengah obat. Pengulangan pengukuran dilakukan masing-masing sebanyak 16 kali pada metode difusi cakram dan 16 kali pada metode sumuran.

J. Prosedur Penelitian

1. Tahap Persiapan

a. Perizinan

Melakukan izin menggunakan Laboratorium Bakteriologi Jurusan Teknologi Laboratorium Medis Poltekkes Kemenkes Yogyakarta. Mengajukan Surat Bebas Etik ke Komisi Etik Poltekkes Kemenkes Yogyakarta.

b. Sterilisasi Alat

Alat-alat yang akan digunakan untuk pemeriksaan perlu disetrilisasi dengan cara mencuci alat lalu dikeringkan dan dibungkus dengan kertas kemudian dimasukkan ke dalam oven selama 8 jam pada suhu 110°C di Laboratorium Bakteriologi Jurusan Teknologi Laboratorium Medis.

c. Sterilisasi aquades

Aquades dimasukkan ke dalam labu erlenmeyer kemudian ditutup dengan kapas dan kertas lalu ditutup plastik dan ditali dengan rafia. Dimasukkan ke dalam *autoclave* suhu 121°C selama 15 menit.

- d. Pembuatan media *Mueller Hinton Agar* (MHA)
 - 1) Timbang 38 gram media tambahkan 1 liter aquades
 - 2) Panaskan sampai mendidih untuk melarutkan media
 - 3) Sterilkan dengan autoclave pada suhu 121°C selama 15 menit
 - 4) Tunggu suhu sampai hangat-hangat kuku (45°C-50°C)
 - 5) Tuang ke dalam cawan petri steril
 - 6) Simpan pada suhu 2-8°C
- e. Pembuatan larutan Mc Farland
 - 1) BaCl₂ 1% sebanyak 0,05ml
 - 2) H₂SO₄ 1% sebanyak 9,95 ml
 - 3) Larutkan kemudian di vortex hingga tercampur rata
- f. Pembuatan suspensi bakteri
 - Koloni Bakteri Escherichia coli diambil satu sampai tiga ose dari biakan
 - Koloni dimasukkan dalam tabung yang telah diisi dengan larutan NaCl 0,85% sebanyak 5 ml
 - 3) Suspensi dibandingkan dengan kekeruhan standar *Mc Farland* 0,5%
 - 4) Lakukan tahap pemeriksaan
- g. Pembuatan NaCl fisiologis

- 1) Ditimbang Natrium Chlorida 0,85 gram
- 2) Masukkan dalam labu erlenmayer
- 3) Tambahkan aquades 100 ml
- Larutkan dan stel pH nya menjadi 7,0 dengan0,1 N NaOH dan 0,1
 N HCl
- 5) Disaring dengan kertas saring
- 6) Hasil saringannya dimasukkan dalam labu erlenmayer atau tabung
- 7) Sterilisasi dengan autoclave 120°C selama 15 menit
- h. Pembuatan larutan antibiotik gentamisin
 - 1) Disiapkan alat dan bahan yang akan digunakan
 - 2) Digerus antibiotik dengan mortar dan alu
 - 3) Dibuat larutan yang setara $10 \,\mu g/50 \,\mu l$ dengan cara ditimbang $100 \,$ mg antibiotik gentamisin kemudian dilarutkan dalam $500 \,$ ml aquades

2. Tahap Pelaksanaan

- a. Uji daya hambat metode cakram
 - 1) Media MHA yang telah disterilisasi diletakkan pada suhu kamar hingga menurun sekitar $45-50\,^{\circ}$ C
 - 2) Tuang media MHA pada cawan petri
 - 3) Mendinginkan media MHA pada cawan petri hingga membeku
 - 4) Menggoreskan Bakteri *Escherichia coli* yang telah disuspensi dalam NaCl fisiologis ke media MHA
 - 5) Ditunggu selama 5 menit

- 6) Kertas cakram ditempel pada media
- Cawan petri ditutup rapat rapat kemudian dibungkus dengan kertas dan plastik
- Cawan petri yang sudah dibungkus disimpan di suhu ruang selama
 jam

b. Uji Daya Hambat Metode Sumuran

- 1) Media MHA yang telah disterilisasi diletakkan pada suhu kamar hingga suhunya menurun sekitar 45 50 $^{\circ}$ C
- 2) Tuang media MHA pada cawan petri
- 3) Mendinginkan media MHA pada cawan petri hingga membeku
- 4) Menggoreskan Bakteri *Escherichia coli* yang telah disuspensikan dalam NaCl fisiologis ke media MHA
- 5) Ditunggu selama 5 menit
- 6) Pada cawan yang diinokulasi bakteri dibuat lubang sumuran menggunakan sedotan kaku sebagai pengganti borer steril
- 7) Masukkan 100 µl antibiotik gentamisin pada lubang sumuran
- 8) Cawan petri ditutup rapat rapat kemudian dibungkus dengan kertas dan plastic
- Cawan petri yang sudah dibungkus disimpan di suhu ruang selama
 jam

3. Tahap Pengamatan

- a. Pengamatan metode cakram
 - 1) Cawan petri dikeluarkan dari tempat penyimpanan

- Dilakukan pengamatan hasil dan pengukuran diameter zona hambat bakteri *Escherichia coli* menggunakan jangka sorong dengan latar belakang terang
- 3) Diameter zona hambat yang diukur yaitu daerah jernih disekitar *kirby bauer* (tidak ada pertumbuhan bakteri). Hasilnya dicatat dengan satuan milimeter (mm).

b. Pengamatan metode sumuran

- 1) Cawan petri dikeluarkan dari tempat penyimpanan
- Dilakukan pengamatan hasil dan pengukuran diameter zona hambat
 Bakter Escherichia coli menggunakan jangka sorong dengan latar
 belakang terang
- Diameter zona hambat yang diukur yaitu daerah jernih (tidak ada pertumbuhan bakteri). Hasilnya dicatat dengan satuan milimeter (mm).

K. Manajemen Data

Data yang diperoleh dalam penelitian ini akan dianalisis menggunakan metode analisis deskriptif dan analisis analitik. Analisis deskriptif dilakukan terhadap seluruh data yang terkumpul, kemudian hasilnya disajikan dalam bentuk tabel dan dianalisis untuk menghitung ratarata zona hambat.

1. Penyajian Data

Data diolah setelah seluruh data berhasil dikumpulkan. Proses pengolahan data menjadi bagian yang sangat penting untuk menemukan

jawaban atas permasalahan yang diteliti, sehingga dapat memberikan makna dan interpretasi tertentu. Data yang diperoleh dari penelitian kemudian dicatat dalam tabel data primer.

2. Analisis Deskriptif

Data yang terkumpul dianalisis secara deskriptif untuk menggambarkan hasil pengukuran diameter zona hambat pertumbuhan Bakteri *Escherichia coli* menggunakan metode sumuran dan cakram setelah pemberian antibiotik gentamisin. Analisis deskriptif dilakukan pada seluruh data yang diperoleh secara keseluruhan.

3. Analisis Analitik

Analisis analitik dilakukan untuk menentukan tingkat potensi antibiotik gentamisin terhadap diameter zona hambat yang dihasilkan pada Bakteri *Escherichia coli* menggunakan metode sumuran dan cakram. Analisis analitik sensitivitas dilakukan untuk mengetahui sensitivitas atau kekuatan antibiotik gentamisin terhadap hasil pengukuran diameter zona hambat.

Tabel 4. Kriteria Kekuatan Antibakteri terhadap Diameter Zona Hambat

Diameter Zona Hambat	Kriteria Kekuatan
≥ 20 mm	Sensitif
15 - 19 mm	Intermediate
≤ 14 mm	Resisten

Sumber : (CLSI, 2020).

4. Analisa statistik

Analisis statistik dilakukan menggunakan program SPSS versi 16.0 untuk Windows. Pengolahan data dapat dilakukan dengan uji

39

Independent T-test atau Mann-Whitney. Uji Independent T-test

digunakan jika data berdistribusi normal dan homogen, sehingga perlu

dilakukan uji homogenitas terlebih dahulu. Sebaliknya, uji Mann-

Whitney diterapkan jika salah satu atau kedua syarat tersebut tidak

terpenuhi.

a. Uji normalitas data

Data hasil pengukuran diameter zona hambat dari seluruh

kelompok dimasukkan ke dalam program SPSS versi 16.0. Uji

normalitas dilakukan menggunakan metode Shapiro-Wilk

karena jumlah data ≤50. Uji ini bertujuan untuk menentukan

apakah data tersebut berdistribusi normal atau tidak. H0 diterima

apabila asymp.sig ≥0,05 dan H₀ ditolak apabila asymp.sig <

0,05.

H₀: data berdistribusi normal

Ha: data tidak berdistribusi normal

b. Uji homogenitas data

Uji ini bertujuan untuk mengetahui data yang dikumpulkan

homogen atau tidak. H_0 diterima apabila asymp. $sig \ge 0.05$

H₀: data homogen

H_a: data tidak homogen

c. Uji Independent Samples t-Test

40

Uji Independent Samples t-Test dilakukan apabila data

berdistribusi normal dan homogen. Uji ini untuk mengetahui ada

atau tidaknya perbedaan zona hambat yang dihasilkan antara

metode difusi cakram dan sumuran. Ho diterima apabila

asymp.sig ≥ 0.05 dan H0 ditolak apabila asymp.sig < 0.05.

H₀: tidak ada perbedaan

H_a: ada perbedaan

d. Uji Mann-Whitney

Uji Mann-Whitney dilakukan apabila data tidak berdistribusi

normal dan tidak homogen. Uji ini untuk mengetahui ada atau

tidaknya perbedaan zona hambat yang dihasilkan antara metode

difusi cakram dan sumuran. H_0 diterima apabila asymp.sig ≥ 0.05

dan H_0 ditolak apabila asymp.sig < 0,05.

H₀: tidak ada perbedaan

H_a: ada perbedaan

L. Etika Penelitian

Penelitian ini memiliki sejumlah risiko bagi peneliti, namun risiko

tersebut dapat diminimalkan dengan menggunakan alat pelindung diri

(APD). APD yang digunakan dalam penelitian ini meliputi jas laboratorium,

sarung tangan, sepatu tertutup dan masker wajah untuk melindungi peneliti

sekaligus mencegah kontaminasi bakteri. Penelitian ini telah mendapatkan

surat layak etik dari komisi etik Poltekkes Kemenkes Yogyakarta No.DP.04.03/e-KEPK.1/533/2025 pada tanggal 15 April 2025.