BAB II

TINJAUAN PUSTAKA

A. Telaah Pustaka

- 1. Escherichia coli
 - a. Pengertian

Bakteri *Escherichia coli* merupakan bakteri yang masuk dalam flora normal yang berada di saluran pencernaan manusia dan hewan ternak. Strain dari *E. coli* yang memiliki sifat patogen serta dapat menimbulkan infeksi yaitu *E. coli* O157:H7 yang dapat mengeluarkan hasil shiga toksin (Elsie dan Harahap, 2016). Telah banyak laporan bahwasannya terdapat cemaran bakteri *E. coli* lebih dari batas normal sehingga dapat menyebabkan berbagai masalah kesehatan antara lain diare, meningitis dan Sindrom Uremik Hemolitik (SUH). Menurut (Trisno, dkk. 2019) infeksi bakteri dapat berakibat fatal serta dapat menyebabkan septisemia. Keberadaan bakteri ini juga dapat menyebabkan meningkatkan keparahan pada suatu penyakit lain yang sedang diderita.

Escherichia coli merupakan bakteri yang terdapat di usus manusia, bakteri ini disebut dengan mikroorganisme yang hidup sebagai flora normal. Bakteri ini secara alami berada di tubuh manusia yang normal dan sehat. Bakteri E. coli dapat menyebabkan infeksi seperti sakit perut ringan hingga berat yang seringkali berupa diare, muntah, demam dan kram perut (Sinaga, 2017; Elfidasari, 2011). Escherichia coli merupakan bakteri dengan bentuk batang

10

pendek (kokobasil). Bakteri E. coli masuk kedalam jenis bakteri

gram negatif. Beberapa strain bakteri ini memiliki kapsul yang

terdapat dua jenis yaitu strain patogen dan non patogen. Strain ini

banyak ditemukan di usus besar manusia yang hidup sebagai flora

normal dan berperan dalam pencernaan pangan dalam menghasilkan

vitamin K dari bahan yang belum dicerna dalam usus besar

(Wahyuningsih, dkk. 2023).

b. Klasifikasi Escherichia coli

Bakteri E. coli memiliki taksonomi sebagai berikut :

Kingdom: Bacteria

Devisi: Proteobacteria

Kelas: Gammaproteobacteria

Ordo: Enterobacteriales

Familia: Enterobacteriaceae

Genus: Escherichia

Spesies: Escherichia coli

Kelompok genus Escherichia dikelompokkan dalam famili

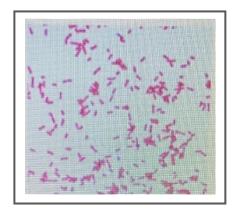
Enterobacteriaceae, E. coli dan bakteri feses koliform lainnya

mayoritas terdapat pada limbah air yang sebelumnya telah tercemar

oleh oleh limbah (Wahyuningsih, dkk. 2023).

c. Morfologi Escherichia coli

Bakteri E. coli merupakan bakteri dengan bentuk basil


pendek yang termasuk dalam bakteri gram negatif. E. coli memiliki

ukuran 0,4 μm – 0,7 μm x 1,4 μm dan bersifat aerob fakultatif. Bakteri ini membentuk koloni yang bundar, cembung dan halus serta memilihi tepi yang nyata (Hidayati, dkk. 2016). Bakteri *E. coli* merupakan bakteri yang mempunyai 150 tipe antigen O, 50 tipe antigen H dan 90 tipe antigen K. Sebagian dari antigen O dapat dibawa oleh mikroorganisme lain, hal ini sama dengan yang dimiliki oleh *Shigella*. Tidak sedikit penyakit yang memiliki hubungan dengan antigen O. Hal ini dapat ditemukan pada penyakit Infeksi Saluran Kemih (ISK) dan diare (Karsinah, 2011).

Strain *E. coli* menghasilkan strain endotoksin, enterotoksin yang tahan terhadap panas dan enterotoksin yang labil terhadap panas, sehingga dapat menghasilkan toksin berasal dari *E. coli* strain grup O. Faktor virulensi lain seperti *fimbriae* dan vili yang dibantu dengan tambahan hemolisin dan substansi seperti *Shiga-toxin*. Terdapat dua strain lain selain antigen O, yaitu antigen H dan antigen K (Wahyuningsih, dkk. 2023). Terdapat villi tipe 1 yang bertugas sebagai pengikat sisa. D- mannose yang umumnya terdapat pada permukaan epitel yang berfungsi sebagai pengikat dari berbagai sel. Villi yang bertugas sebagai pengikat di sel enterosit ditemukan diantara penyakit diare yang disebabkan oleh bakteri *E. coli* (Wahyuningsih, dkk. 2023).

Susunan antigen bakteri ini sama rumitnya dengan antigen Salmonella. Ada sekitar 150 antigen O dari Escherichia coli yang

dikenal sampai sekarang. Banyak anggota *Escherichia* yang mempunyai antigen K, terdiri atas tipe L, A atau B. Serotipe *E.coli* ditentukan berdasarkan antigen K dan H. Sebelas dari golongan antigen O *Escherichia coli* adalah penyebab diare pada bayi dan neonatus. Sifat-sifat biokimia dari serotipe-serotipe ini adalah sama, sehingga satu-satunya cara untuk membedakan serotipe tersebut adalah dengan tes serologi. Untuk tes aglutinasi *E.coli* dengan serum anti O, haruslah terlebih dahulu dipanaskan suspensi bakteri tersebut selama 1 jam pada 100°C. Bakteri *E.coli* hidup dapat beraglutinasi segera dengan serum anti OB, yaitu serum anti yang dibuat dengan menggunakan sel kuman yang tidak dipanaskan dan mengandung antigen K tipe B (Fauziah, 2023).

Gambar 1. *Escherichia coli* pembesaran x1000 (Brooks et al., 2013).

2. Antibiotik

a. Pengertian

Antibiotik adalah senyawa kimia yang dihasilkan oleh mikroorganisme atau diproduksi secara sintetis, yang berfungsi

untuk membunuh atau menghambat pertumbuhan bakteri dan organisme lainnya. Penggunaan antibiotik yang tidak tepat dapat menyebabkan masyarakat mengonsumsi obat tanpa indikasi yang jelas. Penggunaan antibiotik yang salah dapat mengakibatkan berbagai dampak, salah satunya adalah resistensi antibiotik, di mana obat tersebut tidak lagi efektif untuk membunuh kuman atau kuman tersebut menjadi kebal terhadap obat. Saat ini, tingkat pemahaman masyarakat mengenai resistensi antibiotik masih sangat rendah. Berdasarkan penelitian World Health Organization (WHO) di 12 negara, termasuk Indonesia, sekitar 53-62% orang menghentikan konsumsi antibiotik begitu merasa sembuh. Resistensi antibiotik kini menjadi salah satu ancaman terbesar bagi kesehatan masyarakat global, sehingga WHO meluncurkan kampanye global untuk meningkatkan kesadaran dan perilaku masyarakat terkait penggunaan antibiotik (World Health Organization, 2015).

Istilah antibiotik untuk pertama kalinya digunakan oleh Waksman (1945) sebagai nama dari suatu golongan substansi yang dihasilkan dari bahan biologis yang kerjanya antagonistik terhadap mikroorganisme. Istilah itu berarti "melawan hidup". Dengan kata lain maksud dari antibiotik adalah zat yang dihasilkan olek organisme (mikroorganisme) hidup, yang dapat menghambat pertumbuhan mikroorganisme lain, bahkan dapat memusnahkannya. Banyak antibiotik yang berasal dari mikroorganisme, beberapa

dihasilkan oleh spesies fungi biasa, misalnya penisilin, tetapi kebanyakan didapatkan dari bebagai bakteri yang menyerupai fungi (*mold like*). Hanya sedikit yang dihasilkan dari bakteri asli kecuali dari spesies *Bacillus*. Susunan kimia antibiotik, cara kerja dan spektrumnya berbeda- beda (Irianto, 2006).

Antibiotik adalah obat yang digunakan untuk mencegah dan mengobati infeksi yang disebabkan oleh bakteri. Penyakit infeksi sendiri muncul akibat respon tubuh terhadap mikroorganisme yang memicu sistem pertahanan tubuh. Bakteri menjadi penyebab utama terjadinya infeksi, dengan demam sebagai salah satu tanda umum dari penyakit ini. Masalah terkait antibiotik merupakan isu global yang tidak hanya terjadi di Indonesia, sehingga membutuhkan solusi bersama. Penggunaan antibiotik yang tidak rasional dapat secara signifikan meningkatkan resistensi terhadap antibiotik. Oleh karena itu, penting untuk menggunakan antibiotik secara bijak dan rasional guna mengurangi beban penyakit, terutama penyakit infeksi (Mariana N, 2019).

b. Resistensi Antibiotik

Bakteri dapat menjadi resisten terhadap antibiotik jika pertumbuhannya tidak dapat dihambat secara maksimal oleh antibiotik. Beberapa mikroorganisme sudah memiliki sifat resistensi terhadap antibiotik secara alamiah. Sebagai contoh, bakteri Gram negatif telah resisten terhadap vankomisin. Selain itu, spesies

mikroba yang secara normal sensitif terhadap beberapa antibiotik dapat berkembang menjadi resisten. Galur bakteri yang resisten ini dapat terjadi karena mutase secara spontan atau yang didapat dari proses seleksi. Beberapa galur tersebut dapat resisten terhadap lebih dari satu antibiotik.

Resistensi antibiotik dapat merupakan bawaan dari generasi yang sebelumnya atau memang didapatkan dari lingkungan. Resistensi bawaan biasanya diperoleh karena mutasi spontan yang disebut dengan evolusi vertikal (*vertival evolution*), sedangakn resistensi yang diperoleh karena transfer gen dinamakan evolusi horizontal (*horizontal evolution*). Dalam evolusi horizontal, mikroorganisme mendapatkan sifat resistensi karena transfer materi genetik pembawa sifat resistensi dari mikroorganisme donor (Radji, 2014).

c. Antibiotik Gentamisin

Gentamisin merupakan antibiotika golongan aminoglikosida yang dapat digunakan pada terapi infeksi berat yang disebabkan oleh kuman gram negatif aerob. Aktivitas bakterisidal dari gentamisin sangat efektif terhadap *Pseudomonas* dan spesies *Enterobacter*. Gentamisin merupakan antibiotik yang mudah didapat apabila dibandingkan dengan golongan aminoglikosida lainnya seperti kanamisin, amikasin, metilmisin dan lain – lain. Gentamisin telah digunakan secara luas sejak tahun 1963 dengan cara pemberian

secara konvensional (dosis multipel) dengan interval setiap 8 jam atau setiap 12 jam dan dipakai pada semua Rumah Sakit (RS) di Eropa Barat. Dosis multipel gentamisin memberikan risiko efek samping dan toksisitas di samping masalah variasi farmakokinetik individual (Soegijanto, 2016).

Adanya penemuan – penemuan baru farmakodinamik dan patogenesis nefrotoksik akibat pemberian aminoglikosida menyebabkan para ahli mencari cara pemberian dosis rasional untuk meningkatkan efektivitas dan menurunkan toksisitas. Menurut berbagai penelitian tentang gentamisin dosis tunggal in vitro dan pada binatang didapatkan peningkatan efektivitas gentamisin apabila dibandingkan dengan dosis multipel disertai penurunan risiko terjadinya efek samping dan toksisitas. Gentamisin dosis tunggal secara rutin diperkirakan dipakai oleh lebih dari 27% RS di Amerika. Beberapa negara termasuk Inggris pada tahun 200 telah menggunakan gentamisin dosis tunggal sebagai dosis standar dan dipakai pada 80% RS di Inggris. Di Rumah Sakit Umum Daerah (RSUD) Dr. Soetomo gentamisin masih dipakai sebagai antibiotika pilihan pada pasien neonates dengan sepsis (Soegijanto, 2016).

Gentamisin termasuk dalam kelompok aminoglikosida yang memiliki indeks terapi sempit, sehingga memerlukan pemantauan kadar obat dalam darah (Diasinos *et al.*, 2015). Pemantauan ini bertujuan untuk mengukur konsentrasi obat dalam darah guna

memastikan bahwa kadarnya tetap berada dalam rentang terapi yang efektif (Kovacevic *et al.*, 2016).

Antibiotik dapat dikelompokkan menjadi beberapa golongan berdasarkan struktur kimia, mekanisme aksi, spektrum dan sifat kerjanya.

Tabel 1. Mikroorganisme Penghasil Antibiotik

Jenis Mikroorganisme	Jenis Antibiotik
Bakteri	
Bacillus subtilis	Basitrasin
Paenibacillus polymyxa	Polimiksin
Actinomycetes	
Streptomyces nodosus	Amfoterisin B
Streptomyces venezuelae	Kloramfenikol
Streptomyces auroefaciens	Tetrasiklin
Streptomyces fradiae	Neomisin
Streptomyces griseus	Stresptomisin
Saccharopolyspora erythraea	Eritromisin
Micromonospora purpurea	Gentamisin
Streptomyces kanamycetius	Kanamisin
Streptomyces tenebrarius	Tobramisin
Streptomyces rimosus	Oksitetrasiklin
Streptomyces antibioticus	Oleandomisin
Streptomyces halstedi	Karbamisin
Streptomyces ambofaciens	Spiramisin
Streptomyces mediterranie	Rifampisin
Jamur	
Penicillium chrysogenum	Penisilin
Penicillium griseofulvum	Griseovulvin
Cephalosporium spp	Sefalotin

(Radji, 2014)

d. Media Mueller Hinton Agar (MHA)

Media *Mueller Hinton Agar* (MHA) adalah media yang sangat efektif untuk uji sensitivitas bakteri terhadap antibiotik menggunakan metode *Kirby-Bauer*, terutama pada bakteri *non-*

fastidious, baik yang bersifat aerob maupun anaerob. Media ini juga mampu mendeteksi strain yang resisten terhadap sulfonamida serta strain gonokokus yang responsif. Selain itu, MHA telah diakui sebagai media standar dalam pengujian sensitivitas antimikroba. Penelitian sebelumnya menunjukkan bahwa lempeng media MHA dengan metode difusi menghasilkan zona difusi antimikroba yang lebih optimal dibandingkan dengan sebagian besar lempeng media lainnya (Rizki, 2017).

Menurut Atmojo (2016), media *Mueller Hinton Agar* (MHA) digunakan untuk uji sensitivitas karena mendukung pertumbuhan optimal bagi berbagai jenis bakteri. Media ini tidak bersifat diferensial maupun selektif, sehingga cocok untuk pengujian umum. Kandungan inhibitor seperti sulfonamida, trimetoprim, dan tetrasiklin pada media ini sangat rendah, memungkinkan pertumbuhan yang baik untuk bakteri patogen *non-fastidious*. Komposisi Media MHA dapat dilihat pada Tabel 2.

Tabel 2. Komposisi Media Mueller Hinton Agar

Bahan	Jumlah
Beef Extract	2 gram
Acid Hydrolysate of Casein	17,5 gram
Strach	1,5 gram
Agar	17 gram
Aquades	1 liter
Ph akhir pada media Mueller	7.3 ± 0.1 suhu 25 °C
Hinton Agar	

(Sumber : Atmojo, 2016)

Mueller Hinton Agar mengandung ekstrak daging sapi, hidrolisat asam dari kasein, pati dan agar. Ekstrak daging sapi dan hidrolisat asam dari kasein berfungsi sebagai sumber nitrogen, vitamin, karbon, asam amino, sulfur, serta nutrisi penting lainnya. Pati ditambahkan untuk menyerap metabolit toksik yang dihasilkan oleh bakteri agar tidak mengganggu aktivitas antibiotik. Hidrolisis pati menghasilkan dekstrosa, yang menjadi sumber energi. Agar bertindak sebagai agen pemadat dan memiliki struktur yang longgar, memungkinkan difusi antibiotik lebih optimal dibandingkan kebanyakan media lainnya. Difusi yang lebih baik ini menghasilkan zona penghambatan yang lebih akurat (Atmojo, 2016).

e. Metode Difusi

1) Metode Sumuran

Uji aktivitas dalam penelitian ini dilakukan dengan menggunakan metode difusi lubang sumuran. Pemilihan metode ini didasarkan pada kemudahan dalam mengamati diameter zona bening, yang dapat terlihat tidak hanya di permukaan tetapi juga hingga ke dalam media (Pratiwi, 2008). Metode ini sangat sesuai untuk menilai daya antibakteri yang dapat tumbuh baik di luar maupun di dalam media, sehingga diameter zona hambat yang terbentuk akan lebih optimal (Kusuma, 2010).

Metode sumuran tidak jauh berbeda dengan difusi kertas cakram. Media lempeng agar dibuat lubang sumuran sebagai tempat zat antibaketri yang diuji (Tim Mikrobiologi UB, 2003).

2) Metode cakram

Difusi cakram adalah metode yang telah ditetapkan, akurat dan terstandarisasi, yang dapat disesuaikan dengan kebutuhan laboratorium diagnostik. Baik *The European Committee on Antimicrobial Susceptibility Testing* (EUCAST) maupun *Clinical & Laboratory Standards Institute* (CLSI) merekomendasikan waktu inkubasi selama 16–18 jam untuk sebagian besar spesies dan kombinasi obat. Metode difusi cakram Kirby-Bauer, yang telah dibakukan, menjadi alternatif yang layak untuk metode broth (Hombach et al., 2018).

Kertas cakram yang mengandung antibakteri ditanam pada media lempeng agar yang telah diinokulsaikan bakteri tertentu. Selanjutnya, diinkubasi selama 18-24 jam. Zona jernih yang terbentuk disekitar cakram menunjukkan tidak ada aktivitas pertumbuhan bakteri (Tim Mikrobiologi UB, 2003).

f. Pembacaan Hasil Pengujian

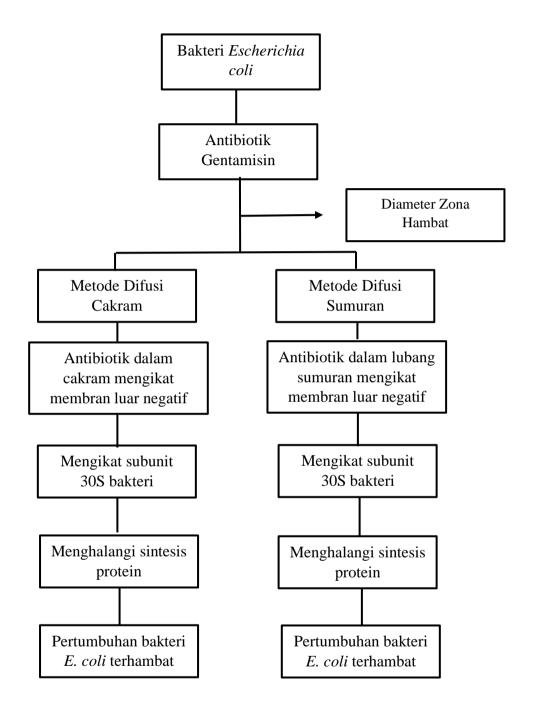
1) Zona Radikal

Zona radikal merupakan area jernih yang terbentuk di sekitar cakram kertas atau sumuran, di mana bakteri tidak dapat tumbuh.

Hal ini terjadi karena bakteri tersebut sensitif terhadap zat aktif yang terdapat dalam senyawa antibakteri yang diuji (Pratiwi, 2008).

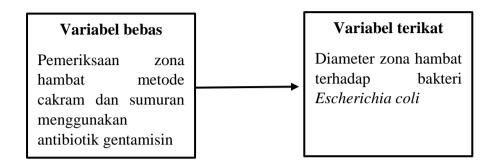
2) Zona Irradikal

Zona irradikal adalah area yang terbentuk di sekitar cakram kertas atau sumuran, di mana bakteri tetap tumbuh tetapi dengan tingkat kesuburan yang lebih rendah dibandingkan area di luar pengaruh zat antibakteri. Zona ini menunjukkan bahwa zat antibakteri hanya menghambat pertumbuhan bakteri tanpa membunuh sel-selnya (Pelczar dan Chan, 1998).


g. Hubungan Bakteri E. coli dengan Antibiotik Gentamisin

Bakteri *Escherichia coli* sering digunakan dalam penelitian untuk menguji efektivitas berbagai antibiotik, termasuk gentamisin. Gentamisin adalah antibiotik aminoglikosida yang bekerja dengan menghambat sintesis protein bakteri, sehingga efektif melawan berbagai bakteri gram negatif, termasuk *E. coli*. Dalam uji kepekaan antibiotik, *E. coli* biasanya menunjukkan sensitivitas yang tinggi terhadap gentamisin. Ini berarti gentamisin sangat efektif dalam menghambat pertumbuhan *E. coli* dalam kondisi tersebut. Namun, penting untuk diingat bahwa resistensi antibiotik dapat berkembang. Oleh karena itu, pengujian kepekaan antibiotik secara berkala sangat penting untuk memastikan efektivitas pengobatan dan mencegah resistensi.

Bakteri *Escherichia coli* sering digunakan dalam penelitian. Infeksi *E. coli* dapat ditularkan melalui kontak langsung dengan individu yang terinfeksi atau dengan hewan yang menjadi pembawa bakteri tersebut. Penularan juga dapat terjadi dengan mudah dari manusia ke manusia. Hingga saat ini, pengobatan dan penanganan infeksi akibat bakteri ini masih mengandalkan penggunaan antibiotik (Isti dan Muhammad, 2024).


Aminoglikosida adalah molekul bermuatan positif dengan ukuran cukup besar, meskipun hanya sepertiga dari ukuran vankomisin. Molekul ini sangat efektif terhadap bakteri gramnegatif aerobik karena ukurannya memungkinkan penetrasi melalui membran luar bakteri. Muatan positif aminoglikosida memungkinkannya berikatan dengan membran luar yang bermuatan negatif, sehingga membentuk pori-pori dan menembus membran sitoplasma bakteri hingga mencapai ribosom. Setiap aminoglikosida 30S bekerja dengan mengikat subunit ribosom menyebabkan ketidaksesuaian antara kodon mRNA dan aminoacyltRNA, yang pada akhirnya mengakibatkan kesalahan dalam proses translasi protein (Anggita, dkk. 2022).

B. Kerangka Teori

Gambar 2. Kerangka Teori

C. Hubungan Antar Variabel

Gambar 3. Hubungan Antar Variabel

D. Hipotesis

Hipotesis dalam penelitian ini adalah metode *kirby bauer* (cakram) lebih sensitif dibandingkan dengan metode *well diffusion* (sumuran) untuk daya hambat menggunakan antibiotik gentamisin terhadap bakteri *Escherichia coli*.