BABI

PENDAHULUAN

A. Latar Belakang

Quality Assurance atau Pemantapan Mutu laboratorium kesehatan merupakan semua aktivitas yang dilakukan untuk menjamin ketelitian dan ketepatan hasil pemeriksaan laboratorium. Pemantapan mutu ini terdiri dari Pemantapan Mutu Internal dan Pemantapan Mutu Eksternal. Pemantapan mutu internal merupakan usaha masing-masing laboratorium untuk melakukan pencegahan dan pengawasan secara teratur agar tidak mengalami atau mengurangi kejadian penyimpangan atau error sehingga didapatkan hasil pemeriksaan yang tepat (Departemen Kesehatan Republik Indonesia, 2013).

Kegiatan yang mencakup Pemantapan Mutu Internal ini meliputi tahap pra analitik, analitik dan paska analitik. Pada tahap analitik terdapat beberapa kegiatan yaitu, pemeriksaan spesimen, pemeliharaan dan kalibrasi alat, uji kualitas reagen dan uji ketelitian-ketepatan. Setiap laboratorium harus melakukan uji ketelitian-ketepatan agar sesuai dengan persyaratan. Uji ketelitian-ketepatan ini dapat dilakukan dengan menguji bahan kontrol yang sudah diketahui nilainya (*Assayed control sera*) (Siregar dkk., 2018)

Bahan kontrol merupakan bahan untuk memantau ketepatan atau mengawasi kualitas hasil pemeriksaan di laboratorium. Bahan kontrol yang digunakan yaitu kontrol komersial atau bahan yang dibuat sendiri (Kementerian Kesehatan Republik Indonesia, 2013). Penggunaan bahan

Poltekkes Kemenkes Yogyakarta

kontrol harus mendapatkan perlakuan sama dengan bahan pemeriksaan spesimen, tanpa perlakuan khusus baik pada alat, metode pemeriksaan, reagen maupun tenaga pemeriksaannya (Departemen Kesehatan Republik Indonesia, 2013).

Beberapa laboratorium klinik terkendala melakukan kontrol kualitas sebelum pemeriksaan dikarenakan harga serum kontrol yang mahal (Departemen Kesehatan Republik Indonesia, 2013). Laboratorium sering menggunakan antikoagulan EDTA (*Ethylenediaminetetraacetic acid*) sebagai pemeriksaan karena mencegah penggumpalan darah (Keohane dkk., 2015). Hal tersebut membuat banyak sisa plasma EDTA ditemukan di laboratorium.

Berdasarkan penelitian yang dilakukan Setyaji dkk. (2024) penggunaan pooled plasma CPDA dapat digunakan sebagai alternatif bahan kontrol komersial pada parameter Quality Control asam urat dan stabil setelah disimpan selama 60-80 hari pada suhu -20 °C dalam uji presisi Quality Control asam urat secara within day dan between day. Metabolom (metabolit) plasma manusia tetap stabil selama 7 tahun di penyimpanan -80°C, namun setelah periode tersebut terjadi perubahan signifikan (Wagner-Golbs dkk., 2019). Sampel Whole Blood yang menggunakan antikoagulan EDTA dapat digunakan untuk pemeriksaan kolesterol total, HDL-C (High Denisity Lipoprotein - Cholesterol) dan trigliserida dan stabil pada penyimpanan selama 2 hari pada suhu 2-8 °C (Nguyen dan Nguyen, 2024).

Berdasarkan latar belakang di atas, peneliti tertarik melakukan penelitian dengan judul "Uji Stabilitas dan Homogenitas *Pooled Plasma* EDTA Sebagai Syarat Bahan Kontrol Terhadap Kadar Trigliserida". Penggunaan plasma EDTA yang dijadikan *pooled plasma* diharapkan dapat digunakan sebagai bahan kontrol alternatif. Sehingga laboratorium yang terkendala dengan bahan kontrol komersial dapat melakukan uji kualitas kontrol.

B. Rumusan Masalah

"Bagaimana homogenitas dan stabilitas *pooled plasma* EDTA terhadap pemeriksaan kadar trigliserida sebagai bahan kontrol pemeriksaan?"

C. Tujuan Penelitian

Mengetahui homogenitas dan stabilitas *pooled plasma* EDTA terhadap pemeriksaan kadar trigliserida sebagai bahan kontrol pemeriksaan.

D. Ruang Lingkup

Ruang lingkup penelitian ini termasuk bidang Teknologi Laboratorium Klinik sub bidang Kimia Klinik khususnya pemeriksaan kadar trigliserida

E. Manfaat Penelitian

1. Manfaat Teoritis

a. Memberikan pengetahuan Pemantapan Mutu Internal (PMI) dalam
bidang laboratorium klinik dengan penggunaan plasma EDTA

Poltekkes Kemenkes Yogyakarta

sebagai bahan *pooled plasma* yang digunakan sebagai bahan kontrol.

b. Memberikan informasi ilmiah mengenai stabilitas dan homogenitas plasma EDTA sebagai bahan alternatif *pooled plasma* sebagai bahan kontrol.

2. Manfaat Praktis

Pemanfaatan plasma EDTA yang dijadikan *pooled plasma* diharapkan dapat sebagai bahan alternatif kontrol pada pemeriksaan kimia klinik khususnya kadar trigliserida

F. Keaslian Penelitian

Tabel 1. Keaslian Penelitian

No	Penelitian	Hasil	Persamaan	Perbedaan
1.	Setyaji dkk.,	Pooled plasma	Penggunaan	Parameter
	2024	CPDA tetap	pooled	dan jenis
	Gambaran	stabil dalam uji	plasma	plasma yang
	Stabilitas	presisi QC asam		digunakan
	Pooled Plasma	urat secara		
	CPDA sebagai	within day dan		
	Bahan Kontrol	between day		
	Kualitas	pasca simpan		
	Pemeriksaan	60-80 hari pada		
	Asam Urat	suhu -20 °C.		
	pada Uji	Pooled plasma		
	Presisi Within	CPDA dapat		
	run dan	dijadikan		
	Between Day	sebagai bahan		
		alternatif		
		pengganti bahan		
		kontrol		
		komersial pada		
		parameter QC		
		asam urat.		

No	Penelitian	Hasil	Persamaan	Perbedaan
3.	Nguyen dan Nguyen,	Stabilitas pada trigliserida,	Parameter dan jenis	Suhu dan waktu
	(2024).	kolesterol total	plasma yang	
	Evaluation of		digunakan	p • j · p · · · · · · ·
	Triglycerides,	whole blood dan	8	
	total	sampel plasma		
	cholesterol and	tidak sama pada		
	high density	suhu yang		
	lipoprotein-	berbeda.		
	cholesterol			
	stability in			
	human whole			
	blood and			
•	plasma samples	A1.1.1.		
2.	Chindara dkk.	Aktivitas ALT	22	Parameter
	(2019)	serum stabil	plasma	dan suhu
	Stabilitas Aktivitas ALT	selama 15 hari pada suhu 2-8°C	EDTA	penyimpana
	Serum, Plasma	secara statistik		yang digunakan
	Heparin, dan	maupun secara		digunakan
	Plasma EDTA	klinis. Pada		
	pada Suhu	plasma heparin		
	Simpan 2-8 °C	stabil 5 hari		
	1	secara statistik		
		dan 7 hari secara		
		klinis pada suhu		
		2-8°C. Pada		
		plasma EDTA		
		stabil secara		
		statistik selama 9		
		hari sedangkan		
		stabil 13 hari		
		secara klinis		
		pada suhu 2-		
		8°C.		