SOP KL 21108.03 PROSEDUR PRAKTIKUM TEKNIK DASAR ANALISIS KIMIA DAN APLIKASINYA UNTUK PENENTUAN KADAR SUATU ZAT (ARGENTOMETRI DAN PENENTUAN KLORIDA DALAM AIR)

1. TUJUAN

- 1.1 Mahasiswa dapat membuat larutan AgNO₃ 0,01 N
- 1.2 Mahasiswa dapat melakukan standarisasi larutan AgNO₃ 0,01 N
- 1.3 Mahasiswa dapat melakukan pemeriksaan klorida dalam air secara argentometri

RUANG LINGKUP

- 2.1 Prosedur ini dipakai oleh Pembimbing praktikum sebagai acuan membimbing mahasiswa agar dapat memiliki kemampuan dalam membuat, menstandarisasi, dan menggunakan larutan AgNO₃ 0,01 N untuk penentuan klorida dalam air
- 2.2 Prosedur praktikum ini merupakan bagian dari praktikum mata kuliah Kimia Lingkungan
- 2.3 Pelaksanaan prosedur ini dilakukan di laboratorium Kimia, Lab Lingkungan Dasar Poltekkes Yogyakarta
- 2.4 Alokasi waktu: 2 x 120 menit

ACUAN

- 3.1 Arnold E. Breenberg, Joseph J Connors, David Jenkins, 1981, Standar Methods for The Examination of Water and Wastewater Fifteenth Edition, APHA, Washington
- 3.2 Clair N Sawyer, Perry L McCarty, 1978, *Chemistry for Environmental Engineering* third edition, Mc Graw Hill Inc, New York
- 3.3 Mirolaw Radojevic, Vladimir N Bashkin, 1999, *Practical Environmental Analysis*, Royal Society of Chemistry, Cambridge

4. DEFINISI

- 4.1 Pembimbing praktikum adalah Dosen dan Instruktur yang ditunjuk oleh Ketua Jurusan Kesehatan Lingkungan untuk melakukan bimbingan terhadap mahasiswa dalam melakukan praktikum Kimia Lingkungan di Laboratorium Lingkungan Dasar
- 4.2 Mahasiswa adalah peserta didik semester I (satu) Jurusan Kesehatan Lingkungan Poltekkes Yogyakarta yang mengambil mata kuliah Kimia Lingkungan

5. PROSEDUR

- 5.1 Tanggung Jawab dan Wewenang
 - 5.1.1 Penanggung jawab kurikulum (Koordinator I) membuat pemetaan Dosen dan Instruktur, dan telah mendapatkan persetujuan dari Ketua Jurusan
 - 5.1.2 Dosen dan Instruktur bertanggung jawab dalam membimbing dan menilai pencapaian pelaksanaan prosedur setiap mahasiswa secara objektif
 - 5.1.3 Dosen dan Instruktur bertanggung jawab terhadap pelaksanaan SOP

5.2 Pelaksanaan

5.2.1 Persiapan

Instruktur melakukan pengecekan kelengkapan sarana-prasarana sebelum praktikum dimulai, meliputi:

- 5.2.1.1 Jadwal praktikum
- 5.2.1.2 Petunjuk praktikum / SOP / kerangka acuan praktik

SOP Kimia Lingkungan

	5.2.1.3	Ruang laboratorium dalam keadaan bersih dan rapi						
	5.2.1.4	Peralatan laboratorium dalam keadaan siap dipakai						
		5.2.1.4.1 Neraca analitik						
		5.2.1.4.2 Labu ukur 100 mL, 1000 mL						
		5.2.1.4.3 Corong kaca Ø 5 cm						
		5.2.1.4.4 Botol timbang atau gelas kimia						
		5.2.1.4.5 Batang pengaduk kaca						
		5.2.1.4.6 Pipet volum 25 mL, 50 mL						
		5.2.1.4.7 Labu Erlenmeyer 250 ml						
		5.2.1.4.8 Buret asam/basa 50 mL						
		5.2.1.4.9 Sendok penyu						
		5.2.1.4.10 Pipet ukur 1 mL						
	5.2.1.5	Bahan-bahan yang akan digunakan untuk praktik dalam keadaan						
		siap dipakai						
		5.2.1.5.1 Kristal AgNO ₃ pa.						
		5.2.1.5.2 Kristal NaCl pa						
		5.2.1.5.2 Kristal NaCl pa 5.2.1.5.3 Indikator K2CrO4 1% 5.2.1.5.4 Larutan HNO3 10%						
		5.2.1.5.4 Larutan HNO3 10%						
		5.2.1.5.5 Akuades						
		danya daftar hadir mahasiswa dan pembimbing praktik						
5.2.2	Dosen	, , , , , , , , , , , , , , , , , , , ,						
	•	ajaran di laboratorium secara efektif						
5.2.3		menjelaskan (dan mendemonstrasikan jika dipandang perlu)						
		-langkah keterampilan 5.2.3.1 s/d 5.2.3.3						
	5.2.3.1	Pembuatan Larutan Standar AgNO ₃ 0,01 N sebanyak 250 mL						
		5.2.3.1.1 Ditimbang 1,7 gram kristal AgNO ₃						
		5.2.3.1.2 Dilarutkan dengan akuades dalam labu ukur 1000 mL						
		sampai tanda tera						
		5.2.3.1.3 Digojok hingga homogen, selanjutnya disimpan dalam						
	5222	botol reagen polietilena andarisasi Larutan AgNO ₃ 0,01 N (dengan NaCl pa)						
	5.2.3.2	Standansasi Larutan Agivo3 0,01 iv (dengan ivaoi pa)						
		5.2.3.2.1 Ditimbang teliti 50 mg kristal NaCl (bbp) dalam						
		timbang atau gelas kimia kecil.						
		5.2.3.2.2 Dilarutkan dengan sedikit akuades, dituang ke dalam						
		labu ukur 100 mL. Botol/gelas timbang dibilas						
		dengan akuades dan air bilasan dimasukkan ke						
		dalam labu ukur yang sama. Ditambah akudes						
		sampai tanda tera. Digojok hingga homogen.						
		5.2.3.2.3 Larutan tersebut diambil sebanyak 25 mL dengan						
		pipet gondok, selanjutnya dimasukkan ke dalam labu						
		erlenmeyer 250 mL						
		5.2.3.2.4 Ditambah 1 mL larutan K ₂ CrO ₄ 1 %						
		5.2.3.2.5 Dititrasi dengan larutan AgNO ₃ yang akan dibakukan						
		sampai tepat terjadi pembentukan endapan/warna						
		kemerahan. Dicatat mL titrasinya						
		5.2.3.2.6 Dilakukan perhitungan sebagai berikut:						
mg berat NaCl hasil penimbangan								
		Normalitas NaCl =						

SOP Kimia Lingkungan 03 - 2

BE NaCl X mL larutan yang dibuat

Normalitas AgNO₃ =
$$\frac{\text{mL NaCl X N NaCl}}{\text{mL AgNO}_3}$$

= (dinyatakan sampai 4 desimal)

Faktor AgNO₃ 0,01 N =
$$0.01$$
 ----- (dinyatakan sampai 3 desimal) 0.01

5.2.3.3 Penetapan Klorida dalam Air Minum

- 5.2.3.3 Diambil 100 mL air sampel, dimasukkan ke dalam labu erlenmeyer 250 mL
- 5.2.3.3 Ke dalam labu erlenmeyer tersebut dimasukkan sesobek kecil kertas lakmus, ditambah beberapa tetes HNO₃ 10 % sambil digojok hingga kertas lakmus berwarna merah, kemudian ditambahkan beberapa tetes NaOH 0,1 N sabil digojok hingga netral (kertas lakmus menjadi berwarna sedikit biru)
- 5.2.3.3 Ditambah 1 ml larutan K_2CrO_4 1 %, kemudian dititrasi dengan larutan standar $AgNO_3$ 0,01 N sampai berwarna kuning kemerah-merahan. Dicatat ml $AgNO_3$ 0,01 N yang dibutuhkan
- 5.2.3.4 Dilakukan perhitungan sebagai berikut:

Klorida =
$$000$$
= 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

- 5.2.4 Dosen melakukan interaksi dengan mahasiswa saat menjelaskan dan atau mendemonstrasikan keterampilan
- 5.2.5 Dosen memberi kesempatan kepada mahasiswa untuk bertanya
- 5.2.6 Dosen memberi kesempatan kepada mahasiswa untuk mempraktikkan keterampilan 5.2.3.1 s/d 5.2.3.3 dalam kelompok-kelompok kecil (tidak lebih dari 5 orang)
- 5.2.7 Dosen dibantu oleh Instruktur melakukan pengawasan kepada mahasiswa saat praktikum berlangsung dengan memberikan feedback secara positif dan membangun
- 5.2.8 Dosen menyimpulkan proses pembelajaran di laboratorium sebelum mengakhiri sesi pembelajaran
- 5.2.9 Dosen mengingatkan kepada mahasiswa untuk membuat laporan praktikum dan merapikan kembali ruang, alat, dan bahan lab yang telah dipakai
- 5.2.10 Dosen/Instruktur mempersilakan kepada mahasiswa untuk mengisi daftar hadir praktikum dan memastikan daftar hadir praktikum telah terisi lengkap
- 5.2.11 Setelah acara praktikum selesai, Instruktur memastikan peralatan dan ruangan laboratorium telah kembali dalam keadaan bersih dan rapi

SOP Kimia Lingkungan 03 - 3

5.2.12 Instruktur mendokumentasikan semua kegiatan praktikum

6. PENGENDALIAN / PEMANTAUAN

- 6.1 Daftar hadir mahasiswa dan Dosen/Instruktur yang telah ditandatangani
- 6.2 Isian ceklist monitoring praktikum
- 6.3 Laporan praktikum mahasiswa
- 6.4 Laporan penggunaan bahan habis pakai

7. DOKUMENTASI

7.1	SOP no.	Monitoring praktikum
7.2	SOP no	Menimbang dengan neraca analitik
7.3	SOP no	Menggunakan pipet
7.4	SOP no	Membuat larutan
7.5	SOP no	Laporan praktikum mahasiswa
7.6	SOP no	Keamanan bekerja di Laboratorium

8. PENGESAHAN

Disusun	n oleh	Diperiksa oleh		Disetujui dan disyahkan oleh	
Dosen MK Ki	imia Lingk.	Koordinator I		Ketua Jurusan Kesling	
Tanggal	Tanda Tangan	Tanggal	Tanda Tangan	Tanggal	Tanda Tangan

SOP Kimia Lingkungan 03 - 4