PROCEEDING BOOK

THE 4th INTERNATIONAL CONFERENCE ON HEALTH SCIENCE 2017

“The Optimalization of Adolescent Health in The Era of SDGs”

INNA GARUDA HOTEL YOGYAKARTA, INDONESIA
November 5th, 2017

HEALTH POLYTECHNIC OF HEALTH MINISTRY
YOGYAKARTA Jl. Tata Bumi No.3, Banyuraden, Gamping, Sleman, Yogyakarta, Indonesia 55293 Phone/Fax.62-274-617601, Email : ichs@poltekkesjogja.ac.id
PROCEEDING BOOK
THE 4th INTERNATIONAL CONFERENCE
ON HEALTH SCIENCE 2017

“The Optimalization of Adolescent Health in The Era of SDGs”

INNA GARUDA HOTEL YOGYAKARTA,
INDONESIA
November 5th, 2017

Copyright is protected by Copyright Law year 1987
No part of publication may be reproduced in any methods without written permission of the publisher

Published by
Health Polytechnic of Ministry of Health in Yogyakarta 2017
Proceeding of
The 4th International Conference on Health Science 2017
“The Optimalization of Adolescent Health in The Era of SDGs”

Printed in
Yogyakarta
November
2017

Editorial Board for
Proceeding Chief:
Sabar Santoso, S.Pd.,APP.,M.Kes

Members:
Apriyatni Condor Ekarini, S.ST.,M.Kes
Andika Trisurini, S.Pd
Ayu Triani, S.T.
Dina Fadhilah, S.Tr

Reviewer:
Sammy Onyapidi Barasa, BSN,MPH
(Kenya Medical Training College Chuka Campus)
Dr. Shefaly Shorey
(National University of Singapore)
Th. Ninuk Sri Hartini, Ph.D
(Health Polytechnic of Health Ministry Yogyakarta, Indonesia)
Nugraheni Tri Lestari, SKM, MPH
(Health Polytechnic of Health Ministry Yogyakarta, Indonesia)
Dr. Yuni Kusmiyati, SST.,M.PH
(Health Polytechnic of Health Ministry Yogyakarta, Indonesia)
Dr. Jenita DT Donsu, SKM.,M.Si
(Health Polytechnic of Health Ministry Yogyakarta, Indonesia)
Dr. Catur Budi Susilo, S.Pd.,S.Kp.,M.Kes
(Health Polytechnic of Health Ministry Yogyakarta, Indonesia)
Muji Rahayu, S.Si.,Apt.,M.Sc
(Health Polytechnic of Health Ministry Yogyakarta, Indonesia)

Editors:
Sabar Santoso, S.Pd.,APP.,M.Kes
Dr. drg. Wiworo Haryani, M.Kes
Dr. Ir. I Made Alit Gunawan, M.Si
Dr. drg. Quroti Ayun, M.Kes
Siti Nuryani, S.Si.,M.Sc
Niken Meilani,
S.SiT,S.Pd.,M.Kes
Ns. Sutejo,
Muryoto, SKM.,M.Kes
Table of Contents

Page Address from The Chairman of The Conference .. viii
Address from Director of Health Polytechnic of Health Ministry Yogyakarta ix
The 4th International Conference On Health Science 2017 Committee x
List of Keynote Speaker .. xvi
List of Oral Presentation ... xvii
List of Poster Presentation .. xix
Abstract of Keynote Speakers ... 1
Full text of Oral Presentation .. 10
Full text of Poster presentation ... 142

Keynote Speaker

I-01 Role of Regional Head in Order to Successful Community Movement
Health Living on Adolescent
Dra. Hj. Sri Muslimatun, M.Kes (Indonesia) .. 1

I-02 Health Ministry’s Policy to Improve Adolescent Health in The Era of SDGs
drg. Usman Sumantri, M.Sc (Indonesia) .. 2

I-03 Climate Change and The Health Consequences in The Population
Prof. Dr. Tengku Mohammad Ariff R. Husein (Malaysia) .. 3

I-04 Overview for The Policy and Support of Government of Thailand
Prof Assoc. Prof. Patcharee Jearanaikoon, PhD (Thailand) .. 4

I-05 HIV Testing in Laboratory and Community to Detect Carrier Among Adolescence Immediately
Assistant Prof. Amonrat Jumnainsong, PhD (Thailand) ... 5

I-06 Mental Health Detection in Teenagers

I-07 Youth Marriage on Reproductive Health
Dr. Yuni Kusmiyati, SST.,MPH (Indonesia) ... 7

I-08 Hormonal Changes in Tissue Periodontium in Adolescents
Dr. drg. Dahlia Herawati, SU.,Sp.Perio (K) (Indonesia) .. 8

I-09 Improving Child Nutrition Literacy For Teenage Pregnant Women And Its Implication To The First 1000 Days Of Child Life: Arguments For Developing Social Media Based Adolescent Support Group In Indonesia
Dr Dr. Mubasysyir Hasan Basri, MA (Indonesia) ... 9
Oral Presentation

O-01 Identifying the Role of Hemoglobin in Intradialytic Nausea and Vomiting in Panembahan Senopati General Hospital in Bantul
Cornelia D.Y Nekada, Eva Ernawati, Tia Amestiasih (Indonesia)................................. 10

O-02 The Influence Of Early Breastfeeding Initiation On Postpartum Mother’s Breast Milk Production In Lismarini Independent Midwifery Practice Palembang
Indah Rahmadaniah, Lusi Meliani (Indonesia)... 18

O-03 Maternal Characteristics and Low Birth Weight
Tri Budi Winarsh, Hesty Widyasih, Margono (Indonesia).. 22

O-04 Relationship of Obesity Early Pregnancy With Preeclampsia In RSUD Sleman 2016
Della Eprilian Sari, Dyah Noviawati Setya, Margono (Indonesia)....................................... 30

O-05 The Effectiveness of Nipple Stimulation By Providing Supplementary Food to Succesfull Breastfeeding Back (Relactation) To The Breastfeeding Mothers In Southern Tangerang 2016
Isroni Astuti (Indonesia).. 35

O-06 Factors Related to Breast Cancer Among Women in Yogyakarta City Public Hospital, Indonesia
Tia Arsittasari, Dwiana Estiwidani, Nanik Setiyawati (Indonesia).. 43

O-07 The Effectiveness of Health Education Through Smartphone and Booklet on Knowledge and Attitude of Adolescence Reproductive Health
Puspa Sari, Kusnandi Rusmil, Arief S. Kartasasmita, Farid, Tati Latifah Erawati Rajab, Deni K. Sunjaya, Tina Dewi Judistiani (Indonesia).. 51

O-08 Physical Activities and Snack Consumptions of Obese Adolescents In Bantul, Yogyakarta
Mellia Silvy Irdianty (Indonesia).. 60

O-09 The Correlation Education About Health Reproductive and Knowledge and Attitude of Health Reproductive of Adolescent
Kusbaryanto, Hatasari (Indonesia)... 68

O-10 The Relationship Between Knowledge, Attitudes, Actions Related to The Clean and Healthy Behavior and Nutritional Status with Diarrhea Events In Islamic Boarding School
Sinta Mukti Permatasari, Ayu Rahadiyanti, Fathimahi (Indonesia)....................................... 74

O-11 Factors Associated with Exclusive Breastfeeding among Working Mothers in Yogyakarta City, Indonesia
Sri Yunita, Munica Rita Hernayanti, Niken Meilani (Indonesia)... 79

O-12 Characteristics of Sexually Transmitted Infections In Polyclinic dr. Sardjito Hospital Yogyakarta
Atika Karunia Zulfa, Jenita Doli Tine Donsu, Sugeng (Indonesia)... 86
<table>
<thead>
<tr>
<th>O-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factors That Influences of People Living With HIV/AIDS (PLWHA) in VCT Division of General Hospital Waluyo Jati Kraksaan District Probolinggo</td>
</tr>
<tr>
<td>Cicilia Windiyaningsih, Lis Hanifah (Indonesia)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanted of Sarang Semut Infusion (Myrmecodia Pendens Merr & Perry) as Decreased Blood’s Uric Acid in Male Rats of Wistar Strain</td>
</tr>
<tr>
<td>Agus Supriyono, Ariani Hesti (Indonesia)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Meaning and Role of Spirituality in HIV/AIDS Patients</td>
</tr>
<tr>
<td>Agus Prasetyo, Sodikin, Widyoningsih (Indonesia)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therapeutic Communications Reduce The Patient’s Anxiety of Pre Operation Patiens</td>
</tr>
<tr>
<td>Intan Mirantia, Harmilah, Surantana (Indonesia)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of Related Factors with A Subjective Complaint of Musculo Skeletal Diseases (Part II) : Characteristics and Relationship Characteristics Individual Factors on Workers Insurance Office</td>
</tr>
<tr>
<td>Arif Jauhari, Kuat Prabowo, Arfia Fridianti (Indonesia)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects of Husband’s Support in The Duration of Second Stage of Labor Among Primigravida in Indonesia</td>
</tr>
<tr>
<td>Sagita Darma Sari, Desi Ratnasari (Indonesia)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Relationship Between Family Burden with Frequency of Recurrence Patient with Paranoid Schizophrenia</td>
</tr>
<tr>
<td>Livana PH, M Fathkul Mubin (Indonesia)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Through The Flipbook to The Level of Knowledge About Domestic Violence in Fertile Couples in Sleman in 2017</td>
</tr>
<tr>
<td>Yani Widyastuti, Khadizah Haji Abdul Mumin, Yuliantisari (Brunei Darussalam)</td>
</tr>
</tbody>
</table>

Poster Presentation

<table>
<thead>
<tr>
<th>P-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experience of Adolescents with Premenstrual Syndrome and Information-Focused Therapy (IFT) For Reducing Its Affective Symptoms</td>
</tr>
<tr>
<td>Dewi Marfuah, Nunung Nurhayati (Indonesia)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation of Amount of Parity and Menopause Age in Padukuhan Cangkringan, Argomulyo Village, Cangkringan District, Sleman Regency, Special Region of Yogyakarta</td>
</tr>
<tr>
<td>Ninyng Nurdianti, Sukmawati (Indonesia)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Risk of Obesity and Developmental Delay in 2-5 Year Old Stunted Children in Kanigoro, Saptosari, Gunung Kidul, Yogyakarta</td>
</tr>
<tr>
<td>Rr Dewi Ngaisyah, Siti Wahyuningsih (Indonesia)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giving of Catfish Abon to the Creatinine Level of Haemodialysis Patients</td>
</tr>
<tr>
<td>Fery Lusviana Widiany, Ari Tri Astuti (Indonesia)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect of Moringa Oleifera Cookies in Anemia Adolescent</td>
</tr>
<tr>
<td>Devillya Puspita Dewi, Farissa Fatimah (Indonesia)</td>
</tr>
<tr>
<td>Page</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>P-06</td>
</tr>
<tr>
<td>P-07</td>
</tr>
<tr>
<td>P-08</td>
</tr>
<tr>
<td>P-09</td>
</tr>
<tr>
<td>P-10</td>
</tr>
</tbody>
</table>
The 4th International Conference on Health Science 2017 Committee

A. Steering Committee
Advisory Committee
1. The Head of Health Practitioners Training and Education Center of The Committee on Development and Empowerment of Health Human Resources of Health Ministry of Indonesia
2. The Head of Committee on Development and Empowerment of Health Human Resources of Health Ministry of Indonesia
3. Dr. Robert Priharjo, M.Sc, BSN PGCE RN
 Lecturer Anglia Ruskin University, United Kingdom

B. Organising Committee
Person in charge: Joko Susilo, SKM., M.Kes
Chairman I: Sari Hastuti, S.SiT, MPH
Chairman II: Mohamad Mirza Fauzie, S.SiT., M.Kes
Chairman III: Sri Arini Winarti Rinawati, SKM, M.Kep
Secretary: Yani Widyastuti, SSiT, M.Keb
Treasurer: Suwandi, SE
 Tanto Yuono, SE
 Ns Harmilah, M.Kep, Sp.MB

Members
1. Secretariat
 1. Dasilah
 2. Evriyani, Amd
 3. Eva Lidya Yunita, AMd.Kg
 4. Astuti Dwi E, Amd
 5. Veronica Anindyatni Nugroho Putri, Amd

2. Scientific committee
 (keynote speaker+materials)
 1. Hesty Widyasih, SSiT, M.Keb
 2. Achmad Husein, SKM, MPd
 3. Sugeng, Ners., M.Sc
 4. Almira Sitasari, S.Gz, MPH
 5. Aryani Widayati, SSiT, MPd
 6. Eni Kurniati, S.Si., M.Sc

3. Proceeding committee
 1. Sabar Santosa, SPd, APP, M.Kes
 2. Dr. drg. Wiworo Haryani, M.Kes.
 3. Siti Nuryani, S.Si., M.Sc
 4. Dr. Ir. I Made Alit Gunawan, M.Si.
 6. Dr. drg. Quroti Ayun, M.Kes
 7. Muryoto, SKM, M.Kes
 8. Ayu Triani, S.T.
 9. Desi Rochmawati, SS.M, Hum
 10. Andika Trisurini, S.Pd
 11. Dina fadhilah, S.Tr
 12. Apriyatni Condro Ekarini, S.SiT., M.Kes
 13. Sapto Harmoko, SIP

PROCEEDING BOOK
x
The 4th International Conference On Health Science 2017
4. Event Committee

1. Yanuar Amin, S.ST.,SH
2. Rosa Delima Ekwantini, S.Kp.,M.Kes
3. Dra. Elza Ismail, M.Kes
5. Sarka Ade, SIP, S.Kep. MA
6. Rybob Khomes, S.Kom

5. Promotion, Publication and Business Committee

1. Ika Prasetyo Nugroho, SE
2. Uki Wulangi, SST
3. Nugrahena Tri Lestari, SKM, MPH
4. Mina Yumei Santi, SST, M.Kes
5. Etty Yuniarly, SST, MPH
6. Haryono, SKM, M.Kes
7. Trubus Basuki, AMd
8. Bekti Irianto

6. Registration

1. Drs. Harya Kunjana
2. Narto, BE, STP, MP
3. Siti Hani Istiqomah, SKM, M.Kes
4. Nuriana Kartika Sari, SST
5. Suhardjono, S.Pd., S.SiT, M.Kes

7. Logistics

1. Tjarono Sari, SKM, M.Kes
2. Puti Sudarwati, S.Si
3. Sukarti, SIP

8. Decoration, Place

1. Suharyana, SKM
2. Purwanto

9. Documentation

1. Heri Purwanto, SE
2. Harsono, AMd.
3. Abdul Hadi Kadarusno, SKM, MPH

10. Transportation

1. Tri Widodo, AMd
2. Agus Pamuji
3. Giyanto
Poster Presentations

P-09

LARVICIDAL ACTIVITY OF STAR FRUIT EXTRACT (Averrhoa carambola Linn) AGAINST LARVAE OF Aedes aegypti

Siti Zainatun Wasilah
Health Analyst Health Polytechnic of Ministry of Health in Yogyakarta, Indonesia
Email : sitizainatunw@yahoo.co.id

ABSTRACT

Star fruit extract (Averrhoa carambola L) is potential as a natural larvicides because it contains chemical compounds of flavonoids, alkaloids, saponins. This study aims to determine the larvacidal activity of star fruit extract to Aedes aegypti larvae and LC50 value after 24 hours exposure. This study used concentration with 1.5%, 2%, 2.5%, 3%, 3.5% and 1 negative control using tap water and 1 positive control using 0.01% temefos. This study was post test only with control group design, total samples is 525 larvae from third stage instar larvae of Aedes aegypti. The mortality larvae will be calculated after 24 hours. The results of the study showed the percent mortality at concentrations of 1.5%, 2%, 2.5%, 3%, 3.5% Aedes aegypti larvae were respectively 0; 10.68; 21.36, 30.68; 54.68; 61.36. The result of Annova test obtained P <0.05 meaning that there is significant difference between death rate of Aedes aegypti larvae with various concentration of star fruit extract (Averrhoa carambola L) given. The LC50 value of the probit test for Aedes aegypti larvae is 3.035%. It can be concluded that the star fruit extract (Averrhoa carambola L) can kill Aedes aegypti larvae.

Keyword : Star Fruit Extract (Averrhoa carambola L), Aedes aegypti larvae, Larvicidal Activities

INTRODUCTION

Indonesia is one of the tropical countries in the world that has the optimum temperature and humidity for the survival of insects. The mosquitoes is the one of the species of insects that gained great attention in human health, as a potential vector on the transmission of diseases. Some types of mosquito-borne diseases, such as Dengue Hemorrhagic Fever, Dengue Fever, Cikungunya (Break Bone Fever), are transmitted by Aedes aegypti mosquitoes. The existence of mosquitoes adjacent to human and animal life is that cause serious problems because mosquitoes act as a vectors.

Eradication of mosquito-borne diseases is to break the chain of life cycle of mosquitoes that consists of four kinds of eliminating the cause of the disease, isolation of the patient, preventing mosquito bites, and vector control1. Vector control efforts have been carried out in various ways that is mechanics, biology, and chemistry. These various ways the most popular is the eradication of chemicals by insecticides. However, the use of these chemical insecticides has enormous negative impacts such as environmental pollution, predatory mortality, targeted insect resistance, killing of pets and causing various dangerous diseases in humans2.

Based on the research of concerning larvae effect of Averrhoa carambola Linn of instar larvae of Aedes aegypti mosquito, saponin and flavonoid contained in Averrhoa carambola Linn have effect as larvicides3. Kecombrang (Etlingera elatior) stem extract containing flavonoids and saponins is effective as larvicides with concentrations of 0.75% and 1%4. Based on this fact, an alternative larvicides derived from natural ingredients is needed to reduce the use of chemical insecticides. One of the alternative larvicides used is native Indonesian plants such as starfruit (Averrhoa carambola L) which is easy to obtain, cheap and high efficacious. The use of materials derived from plants can be used
as an alternative in mosquito larvae control. The star fruit (*Averrhoa carambola* L) contains compounds such as alkaloids, saponin and flavonoids and other chemical compounds that can affect the nervous system, digestion and breathing in larvae. For that, further research on larvicides activity from star fruit extract (*Averrhoa carambola* L) to *Aedes aegypti* mosquito larvae.

MATERIAL AND METHODS

1. **Preparation of test materials**

 Aedes aegypti mosquito eggs in this study were obtained from the Parasitology Laboratory of Gadjah Mada University Yogyakarta. The mosquitos eggs then placed in a 30x15 cm plastic tray filled with water as for the maintenance of the larvae. Mosquitos eggs will hatch into larvae within 1-2 days. Hatching eggs into larvae are separated by using larval pipettes for colonization and fed by chicken’s liver. After the third phase instar larvae, the larvae are removed by using a larval pipette into a plastic cup containing star fruit extract with different concentrations in each cup.

2. **Preparation of Test Solution**

 This extract made in accordance with the method of maceration, extract used is star fruit washed by tap water and then chopped fine, then dried on room temperature. After dry, star fruit blend dry (without water) then soaked for 24 hours in ethanol 96%. Once soaked, the material is filtered using a gauze cloth. The maserate, concentrated at 40-50°C by a rotary evaporator. Ethanol extract of star fruit dilute by aquadest to 1.5% ; 2%; 2.5% ; 3% ; 3.5%. As for positive control is abate containing 0.01% temefos, and tap water as negative control.

3. **Parameters Larvicides Activity of Star fruit**

 The larvicidal activity was assessed by the procedure of WHO and Pesticide Commission. According to WHO procedure, concentration is considered to have an effect when causing death test larvae of 10-95% which will be used to find the value of lethal concentration. Meanwhile, according to the Pesticide Commission, the use of larvicides is said to be effective if it can kill 90-100% test larvae.

4. **Determination the LC50 Value**

 For the bioassay test, larvae were taken into five batch, 25 larvae *Aedes aegypti* of each batch, in 100 ml desired concentration of star fruit extract. The negative control was tap water and 0.01% temefos as positive control. The number of dead larvae were counted after 24 hours of exposure, and the percentage of larvae mortality was reported from the average of three replicate. The mean of death of each treatment group in each unit of observation time was tested by using Probit analysis until LC50 value was obtained.

RESULTS AND DISCUSSION

This research was conducted in entomology laboratory of Faculty of Public Health of Ahmad Dahlan University Yogyakarta for 5 days. The making of star fruit extract (*Averrhoa carambola* L) was done in LPPT UGM, it took about 3 weeks. This research started with *Aedes aegypti* egg rearing obtained from Parasitology Laboratory of FK UGM Yogyakarta. The observations were conducted at Ahmad Dahlan Yogyakarta Public Health Laboratory with 3 repetitions with concentration of 1.5%, 2%, 2.5%, 3%, 3.5% with positive control of 0.01% temefos and the tap water as negative control.Before the actual test, firstly done preliminary test to determine the actual concentration for testing third...
stage instar larvae of *Aedes aegypti*. The results of the study are presented in the following table:

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of larvae</th>
<th>Repeat</th>
<th>Average mortality %</th>
<th>% mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.5%</td>
<td>25</td>
<td>2</td>
<td>2</td>
<td>2.67</td>
</tr>
<tr>
<td>2.0%</td>
<td>25</td>
<td>5</td>
<td>6</td>
<td>5.34</td>
</tr>
<tr>
<td>2.5%</td>
<td>25</td>
<td>8</td>
<td>8</td>
<td>7.67</td>
</tr>
<tr>
<td>3.0%</td>
<td>25</td>
<td>12</td>
<td>13</td>
<td>13.67</td>
</tr>
<tr>
<td>3.5%</td>
<td>25</td>
<td>18</td>
<td>14</td>
<td>15.34</td>
</tr>
<tr>
<td>Temefos 0.01%</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

Source: Primary Data 2017

The highest mortality was found at the highest concentration of 3.5%. The number of larval deaths increases with the increased concentration of star fruit extract (*Averrhoa carambola* L) given. Based on it can be seen that the higher concentration of star fruit (*Averrhoa carambola* L) given the higher the death rate of *Aedes aegypti* larva can be seen in the picture below.

Figure 1. Graph The Percentage of *Aedes aegypti* larvae Mortality With Various Concentrations Of Star Fruit Extract (*Averrhoa carambola* L)

PROCEEDING BOOK
The 4th International Conference On Health Science 2017
To determine whether there is any difference between treatment groups, statistical test with normality data test is done. Based on the results of statistics conducted by using Kolmogorov Smirnov test results obtained as the following table:

Table 2. Results of Probit Analysis Star Fruit Extract (Averrhoa carambola L) with Percent Mortality of Aedes aegypti larvae

<table>
<thead>
<tr>
<th>The concentration of star fruit extract (Averrhoa carambola L) (%)</th>
<th>Percentage of larval deaths (%)</th>
<th>LC50 (%) (IK 99%)</th>
<th>LC99 (%) (IK 99%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,5</td>
<td>10,68%</td>
<td>3,03581</td>
<td>5,969</td>
</tr>
<tr>
<td>2</td>
<td>21,36%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5</td>
<td>30,68%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>54,68%</td>
<td>(2,851-3,279)</td>
<td>(5,263-7,155)</td>
</tr>
<tr>
<td>3,5</td>
<td>61,36%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Primary Data 2017

The concentration of 1.5% with 2% and 2.5% with 3% showed no significant difference because (p> 0.05) Furthermore, to find the value of Lethal Concentration 50% (LC50) and 99% (LC99). The results of probit analysis can be seen in table 2. To determine LC50 and LC99 a probit test or unit probability is performed. The data of the research were analyzed by using Minitab 14 program with 95% confidence level. From the results of probit analysis, we found a large estimate of concentration resulting in death of Aedes aegypti larvae, LC50 at 3.03581% with intervals between 2.851% and 3.279%, while for LC99 at 5.969% with intervals between 5.263% and 7.155%.

Furthermore, in the figure above can be seen LC50 value of 3.035% and LC99 of 5.96% means that the effect caused by the extract of star fruit (Averrhoa carambola L) can cause death of 50% larvae Ae.aegypti at concentration 3.035%. Starfruit is also able to cause death 99% at concentration 5.96% this means concentration 3.035% and 5.96% give effect of mortality in Aedes aegypti larvae.

Mosquito is one of the animals that breeding process takes place in two realms. At the egg stage until the pupa lives on the water medium and the adult stage lives on land. At this stage of course the quality of water affects the survival of mosquitoes. Here are the results of measuring the quality of star fruit extract (Averrhoa carambola L).

Table 3. Mean Temperature Measurement of Star Fruit Extract (Averrhoa carambola L) to Aedes aegypti mortality

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Concentration (%)</th>
<th>Time 24 hours</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp (°C)</td>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>1,5</td>
<td>27</td>
<td>27,2</td>
<td>27,1</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>2,5</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>27</td>
<td>27,2</td>
</tr>
<tr>
<td>3,5</td>
<td>27,1</td>
<td>27</td>
<td>27</td>
</tr>
</tbody>
</table>

Source: Primary Data 2017

From table 3 it can be seen that the average of temperature measurement on star fruit extract (Averrhoa carambola L) in each concentration for 24 hours is 24.03-27.1° C. The temperature range in this medium can still be said to be normal. This is in accordance with the opinion that the Aedes aegypti mosquito breeding place is at a temperature of 25-32°C. Thus, larval mortality is not affected by temperature."
Table 4. Average Measurement of Star Fruit Extract (Averrhoa carambola L) Moisture to Aedes aegypti Mortality

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Concentration (%)</th>
<th>Time 24 hours</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>moisture</td>
<td>1,5</td>
<td>76,1</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>2,5</td>
<td>76,2</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>3,5</td>
<td>76</td>
<td>76</td>
</tr>
</tbody>
</table>

Source: Primary Data 2017

From table 4 it can be seen that the average of humidity measurements on star fruit extract (Averrhoa carambola L) in each concentration during 24 hours is 75.93 - 76%. The normal moisture range in this medium can still be said to be normal. This is consistent with the opinion that the Aedes aegypti mosquito breeding place is in moisture > 60%. Thus, larval mortality is not affected by moisture.

Table 5. The Average pH Measurement of Star Fruit Extract (Averrhoa carambola L) to Aedes aegypti Mortality

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Concentration (%)</th>
<th>Time 24 hours</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>pH</td>
<td>1,5</td>
<td>7,2</td>
<td>7,2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7,2</td>
<td>7,2</td>
</tr>
<tr>
<td></td>
<td>2,5</td>
<td>7,3</td>
<td>7,2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7,2</td>
<td>7,2</td>
</tr>
<tr>
<td></td>
<td>3,5</td>
<td>7,2</td>
<td>7,1</td>
</tr>
</tbody>
</table>

Source: Primary Data 2017

From table 5 it can be seen that the average of pH measurement on star fruit extract (Averrhoa carambola L) in each concentration during 24 hours time is 7.1 - 7.2. The normal pH range in this medium is still normal. Mosquito larvae require a breeding place with pH conditions ranging from 5 to 8. This indicates that the pH of star fruit extract (Averrhoa carambola L) did not affect larvae mortality.

Thus it can be concluded that the mortality of Aedes aegypti mosquito larvae caused only by toxic compounds contained in star fruit extract (Averrhoa carambola L).

DISCUSSION

Based on the results of this study, it can be seen that the of star fruit extract (Averrhoa carambola L) can be used as larvasida. This occurs because the star fruit extract (Averrhoa carambola L) there are active compounds in the form of compounds such as alkaloids, soponin and flavonoids and compounds other chemicals that can affect the nervous system, digestion and breathing in larvae.

Mortality of mosquito larvae increases with increasing concentration of star fruit extract (Averrhoa carambola L), it indicates that the extract is toxic. In this study the temperature, pH and humidity are still at normal limits, so the possibility of mosquito larvae in this study die caused by external influences such as temperature, pH and humidity. Variation of mosquito larvae mortality caused by the variety of sensitivity and resistance of each larva to the material active in the extract. The death of the larvae is caused by the inability of the larvae to detoxify the toxic compounds that enter the body.

The difference in the percentage of larval mortality is due to the diffusion speed of extracts entering into different cells so that at low concentrations the larvae can still
tolerate these toxic compounds, whereas at high concentrations the larvae can not tolerate the entry of these toxic compounds. This is in accordance with the opinion of who said that the speed of diffusion depends on the difference in the concentration of substances dissolved during the process. This means that if the concentration decreases, the speed of diffusion also decreases. At each concentration showed an increase in the percentage of mortality every 24 hours, this indicates the longer time, the percentage of larval mortality is also increased. The interaction of toxic substances a biological system is determined by the concentration and length of time. Toxic substances that play a role in lethal larvae are alkaloids, saponins, and flavonoids. Alkaloids that enter the body of the larvae through absorption and degrade the skin cell membrane, besides alkaloids can also interfere with the larval nervous system work.

Based on the results of the observations during the test larvae exhibited anxiety symptoms characterized by upward motion movements on the test medium, while the larval control showed a resting state on the surface forming angles. The starfruit extract (Averrhoa carambola L) could be as Aedes sp. larvicide this is seen from LC50 from star fruit extract (Averrhoa carambola L) to Ae.aegypti is 3.035%.

Alkaloid compounds act as larvicides by inhibiting the feeding power of the larvae (antifeedant), so the larvae will experience nutritional deficiencies and eventually die. This can also be seen from the results of research about the content of active substances tembelekan (Lantana camara L) leaves for Aedes aegypti larvae mortality. Based on the results of these studies the alkaloids contained in the leaves of elasticity serves as a poison or poisoning stomach. The content of alkaloids roots and amethyst five time greater than alkaloid content. The alkaloid can also be used as an insecticide. Alkaloids in leaves or fresh fruit taste bitter on the tongue, alkaloid in the form of salt so that it can degrade the cell wall into and damage cells. The alkaloid compound inhibits the work of acetylcholinesterase enzyme that serves in continuing stimulation to the nervous system, so transmission of excitement does not occur.

Another active compound contained in the star fruit extract is saponins. Saponins result in decreased activity of digestive enzymes and the absorption of food in insects. In addition, saponins also damage the larvae of the larvae causing the death of larvae. The saponins isolated from Achyranthes aspera plants have larvicidal effects on Aedes aegypti and C.quinquefasciatus.

The flavonoid compounds contained in the sweet star fruit extract are also insecticidal because they are respiratory toxins, causing the larvae to not breathe due to respiratory system damage and ultimately causing the death of the larvae. In addition flavonoids also as inhibitors CYP6Z2, family of cytochrome P450 which plays an important role of insecticide resistance in mosquitoes. The flavonoids enter the body of the larvae through siphon located on the surface of the water and cause wilting on the nerves, as well as damage to siphon as a result the larvae can not breathe and eventually die. This study used Aedes aegypti mosquito third stage instar larva, has complete organs and body structure of the body has not been hardened so it is suitable for treatment with alkaloid compounds, saponins and flavonoids.

The secondary plant metabolite compounds can disrupt the respiratory system, affect skin immunity and digestive system which eventually leads to mortality. The function of active compound content such as alkaloid, saponin, flavonoid as larvicide can also be seen from Tinospora rumphii and Citrus grandis plant can cause Aedes aegypti larvae death because it has active ingredient of alkaloids, saponin, flavonoids, steroids and tannins.

Based on the results of this study it can be seen that star fruit extract (Averrhoa carambola L) can be used as larvicide to Aedes aegypti larvae because there are difference of larvae mortality that signifikan between treatment group and control group.
CONCLUSION

Star fruit extract (Averrhoa carambola L) can be used as larvicides against Aedes aegypti larvae. LC50 value of star fruit extract (Averrhoa carambola L.) as larvicides to Aedes aegypti mosquito larvae of 3.04%.

SUGGESTION

1. Can be done research of star fruit extract (Averrhoa carambola L) against larvae of other species mosquitoes
2. For further researchers can use other techniques in the manufacture of star fruit extract(Averrhoa carambola L), to be more effective.

REFERENCES
